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ABSTRACT

Biomimetic underwater vehicles have recently become a focus of academic re-

search. They offer possibly better maneuverability and higher efficiency than con-

ventional thrusters and the potential for amphibious capability. The focus of this

thesis is the modeling and control of biomimetic underwater vehicles, and the specific

platform used for experimentation is the Aqua underwater vehicle.

The study begins with the development of a dynamics model for the Aqua un-

derwater vehicle. An existing model was updated to account for the flexibility of the

oscillating paddles. The model was validated experimentally and linearized to enable

the design of more advanced controllers. Based on the paddle model, we also develop

a reverse model/mapping that determines the paddle motion needed to produce a

desired thrust.

We design four classes of trajectory tracking controllers: PID, model-based con-

trollers, adaptive controller and Floquet controller. The controllers were first tested

in the dynamics simulation to tune the control gains and assess their performance.

We found that the adaptive and Floquet controllers were superior to the other two.

The adaptive controller was more accurate to track a changing trajectory while the

Floquet was better in set point tracking. The controllers were then tested experimen-

tally on the actual Aqua vehicle. The simulation results were partially corroborated

but the controllers were not as accurate. The adaptive controller gave better perfor-

mance in pitch while the Floquet controller was more accurate in roll.

An optimization of a U-turn was performed to improve the performance of the
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vehicle in coral reef inspection. Three design variables were chosen for the optimiza-

tion: the turn radius, the speed and the bank angle. The turn radius and speed had

the most impact on the performance while the bank angle had little effect.
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RÉSUMÉ

Les véhicules sous-marins biomimétiques sont récemment devenus un domaine

de recherche populaire dans les milieux académiques. Ils offrent entres autres la pos-

sibilité d’une meilleure maneuvrabilité, une plus grande efficacité et des capacités am-

phibies. Cette thèse se concentre sur la modélisation et les commandes de véhicules

sous-marins biomimétiques. Le véhicule sous-marin Aqua est utilisé comme plate-

forme d’expérimentation.

Nos recherches ont commencé par le développement d’un modèle dynamique

pour le véhicule sous-marin Aqua. Le modèle fut validé expérimentalement puis

linéarisé afin de permettre la conception de commandes avancées. Un second modèle,

dit inverse, permettant de déterminer le mouvement d’une nageoire en fonction de

la poussée désirée fut par la suite développé.

Nous avons cono̧u quatre classes de commandes: PID, commandes prédictives,

commandes adaptatives et Floquet. Ces commandes furent d’abord testées à l’aide

d’une simulation informatique afin d’ajuster les gains et d’évaluer la performance des

commandes. Nous avons découvert que les commandes adaptives et Floquet étaient

supérieures aux deux autres. Les commandes adaptatives étaient plus précises lorsque

la trajectoire à suivre variait alors que les commandes de Floquet étaient plus perfor-

mantes pour suivre un point fixe. Les commandes furent par la suite testées au cours

d’une scéance expérimentale en utilisant le véhicule sous-marin Aqua. Les résultats
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expérimentaux corroborèrent partiellement ceux de la simulation, mais les comman-

des n’étaient pas aussi précises. Les commandes adaptatives donnèrent une perfor-

mance supérieure en tanguage alors que les commandes de Floquet furent supérieures

en roulis.

Une optimisation d’un U-turn fut effectuée afin d’améliorer la performance du

véhicule lors des inspections de récifs de coraux. Trois paramètres d’optimisation ont

été sélectionnés: le rayon du tournant, la vitesse et l’angle d’inclinaison. Le rayon

du tournant et la vitesse semblaient les deux paramètres ayant le plus d’effet sur la

performance alors que l’angle d’inclinaison n’avait presqu’aucun effet.
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4–4 Comparison of Â and A during the simulation . . . . . . . . . . . . . 121

4–5 PID control gains used in the experiment . . . . . . . . . . . . . . . . 123

4–6 Experimental settling time for the maneuver shown in Figure 4–23 . . 125
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CHAPTER 1

Introduction
Robots have been the subject of human fascinations for centuries. The first

programmable robot was designed and built in 1206, more than 800 hundred years

ago [1]. Leonardo da Vinci tried to build a mechanical knight in the late 15th century

but was unsuccessful. Other robots, such as Digesting Duck (Figure 1–1a) [2] and

the Karakuri Toys, were designed over the following centuries but their purpose was

purely recreational. Over the past century, robotics has evolved to perform the tasks

usually done by humans. The first commercial robot called Unimate (Figure 1–1b)

and designed by the Unimation Company was first installed on a General Motor

assembly line in 1961. Its task was to transport die castings and weld them on an

auto body, a task dangerous for human due to exhaust gases. Over the years, robot

manipulators have mostly replaced humans for simple repetitive tasks.

More recently, there has been a growing interest in mobile robotics. Mobile

robots have the advantage of being able to move in their environment to perform

their task. We can classify mobile robots in three classes according to the environ-

ment in which they operate: land robot, aerial robots, usually known as unmanned

aerial vehicles (UAV) and underwater robots also known as autonomous underwater
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Figure 1–1: (a) Digesting Duck and (b) Unimate

vehicles (AUV). They are used for several applications ranging from cleaning the

floor (Figure 1–2a) to bombing missions (Figure 1–2b). Another subclass of mobile

robots is gaining more attention: biomimetic robots. These robots embody inter-

esting biological features of living creatures to outperform conventional robots. One

advantage of underwater biomimetic robots is that they can be made amphibious.

That will enable both land and sea operations using the same robot. This could

reduce the deployment time for sea operations since the robot could be deploy from

land and walk in the water. With a conventional robot, the robot needs to be brought

in the water manually. These robots can be further separated into remotely operated

and autonomous ones. The former are controlled by a human pilot while the latter

perform their duties autnomously. One of the keys for the success of autonomous

robots is accurate control. The controller refers to the subsystem that transforms

user inputs into robot actions.
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Figure 1–2: (a) Roomba cleaning robot by iRobot and (b) MQ-9 Reaper hunter killer by US military

Over the years, many control techniques have been developed to control mobile

robots. Some depend only on the error signals while others are more complex and

require knowledge about the dynamics of the system. This knowledge is obtained

by constructing a dynamics model for the robot. The model usually takes as input

the generalized forces acting on the robot and outputs the motion of the robot. It

can be obtained either by curve fitting, or by using physics principles. The accuracy

of some controllers depends directly on how accurate the model is. A category of

controllers called adaptive are designed specifically to deal with model uncertainties.

Moreover, dynamics models can be used to simulate the system of interest thus

allowing pre-experiment preparation.

In this thesis, we study the modeling and control of underwater biomimetic ve-

hicles. We validate a dynamics model for the Aqua underwater vehicle and develop

several controllers that are then tested experimentally. We use a simple control tech-

nique, namely PID, as well as more advanced techniques such as model identification
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adaptive control (MIAC) and Floquet based controllers. We believe that for complex

systems such as underwater biomimetic vehicles, advanced control techniques may

offer significant advantages over conventional techniques.

1.1 Aqua Underwater Vehicle

The vehicle or platform used in this research is the Aqua underwater vehicle [3]

depicted in Figure 1–3. It is an evolution of several other vehicles but its main

inspiration is the RHex hexapod walking robot [4]. RHex is a robot with compliant

semi-circular shaped legs, each of which is actuated by only one motor. It is capable of

walking over rough terrain that few other robots can negotiate. Aqua retains most

of RHex’s walking capabilities while also being amphibious due to its waterproof

shell. RHex is capable of running at a speed of 2.7 m/s [5], climbing slopes over 40◦,

bounding [6], flipping [7] and bipedal running using only its two rear legs [8].

Because RHex routinely encountered hazards such as rain or mud it became

obvious that its aluminum frame and Lexan cover were not sufficient for outdoor ex-

periments in an uncontrolled environment. This motivated the design and construc-

tion of three successive robot designs: Shelley-RHex, Rugged-RHex, and AQUA [3].

Shelley had a waterproof shell made out of carbon fiber, which enabled amphibious

operations: walking on land and swimming at the water surface.

Rugged-RHex can walk on land and swim on the water surface using semi-

circular legs, or it can swim underwater using oscillating flexible fins. The fins

produce the propulsive and control forces. A fiber optic tether was required to

transmit the robots video signal to the vehicle operator and the operator’s control

commands to the robot.
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Figure 1–3: Aqua underwater vehicle. Credit: Barbados 2004 team

6



www.manaraa.com

Figure 1–4: Aqua side frame with internal reinforcement

1.1.1 Physical design

Aqua, shown in Figure 1–3 is composed of six hips and one box-shaped body.

The dimensions of the body are 66 × 21 × 13 cm with semi-circular ends. The two

front and back hips are 8 cm in length while the two middle ones are 13.5 cm in

length. The body and hips are made mostly of anodized aluminum and the surfaces

that were most at risk of scratching were powder coated [3]. The total mass of

the body and hips including batteries is approximately 12.39 kg but this can vary

depending on which batteries are used. Aqua was designed to withstand pressures

up to 36.6 m depth, thanks to the reinforced side structure shown in Figure 1–4. It

has been tested in water up to a depth of 39.6 m without failure. Aqua also has

windows at its front and rear, allowing the use of cameras.
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1.1.2 Computer and Communication

The Aqua underwater vehicle is equipped with two PC/104 form-factor single-

board computers. The first computer, that runs the basic robot code, is a 500 MHz

Cool RoadRunner-LX800 manufactured by LiPPERT Embedded Computers GmbH

that uses the neutrino real-time operating system from QNX. The second computer

card is an ADL-855 from Advanced Digital Logic with a 1400 MHz Pentium-M

processor that uses the Linux operating system [9]. Details about the software ar-

chitecture can be found in [10].

A tether is required to transmit visual data because underwater wireless commu-

nication is limited to low bandwidths (e.g. 19200 baud for ultrasonic modem). Since

all power is provided by the two onboard batteries, the tether does not carry any

power. A single 3 mm optical fibre is used because of its light weight and high trans-

mission capability. The longest fibre optic that we have available for our experiments

is 200 m in length.

1.1.3 Sensors

The relative leg position is measured using optical incremental rotary encoders

attached to each leg motor shaft. A MSI-P400 quadrature decoder card manufactured

by Microcomputer Systems Inc. translates these two quadrature output signals from

each encoder into numerical values of angle and rate. The absolute position of each

leg is determined by calibration at the beginning of an experiment.

Although there is no sensor to measure the leg motor electrical current, that

current is estimated using an accurate motor model [11]. This model computes the

current based on the leg angular velocity and the voltage supplied to the motor.
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Figure 1–5: IMU 3DM-GX1 from Microstrain

Using the physical parameters of the motor, it is then possible to estimate the motor

torque.

A 3-axis inertial measurement unit (IMU) manufactured by Microstrain is used

to provide kinematic measurements. It includes three Micro-Electro-Mechanical Sys-

tems( MEMS) acceleration sensors,three MEMS rate gyroscopes and three magne-

tometers. They are oriented orthogonally to provide sensing in all three directions

(x,y and z). The accelerometers give the linear acceleration of the vehicle and the

rate gyroscopes give the angular velocities. The magnometers are not used because of

electromagnetic interference of the leg motors. Therefore, Euler angles are estimated

from the rate gyros using filtering techniques [9].

A 1024x768 IIDC-compliant Dragon Fly Firewire camera from PointGrey is in-

stalled at the front of the vehicle. It is equipped with a fish-eye lens that compensates

for the reduced field-of-view due to the refraction index difference between air and

water [9]. In this work, this camera is used to help navigate the vehicle. It can also

be used for visual-servoing or to record video footage.
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(a) Amplitude A, offset λ and paddle posi-
tion γ for a generic oscillation

(b) Paddle parameters for two different paddles.
λ = 30◦, P = 30s, A = 120◦ and δ = 20◦ or
0.028s

Figure 1–6: Parameters pertaining to eq. (1.1)

1.1.4 Propulsion

The use of flapping foils or paddles to produce thrust for underwater application

is becoming more popular. Several reasons such as high impulse force and possibly

higher efficiency motivates this interest. As will be discussed in Section 1.2.2 many

systems employ flapping paddles to propel an underwater vehicle [12–16]. The basic

principle is simple: the oscillation of the paddle about an axis creates a thrust along

the axis, and this will be analyzed in details in Section 2.

The propulsion forces on Aqua are generated by 6 oscillating paddles. For a

symmetric paddle motion, the net thrust produced by the paddle is directed along the

average paddle position. The motion of the paddles follows a sinusoidal trajectory:

γ =
A

2
sin

(
2π

P
t+ δ

)
+ λ (1.1)
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Figure 1–7: The six degrees of freedom of Aqua

where γ is the paddle angle, A is the amplitude of oscillation, P is the period of

oscillation, λ is the offset of oscillation and δ is the phase offset between the oscillation

of the paddles. Figure 1–6 shows these quantities graphically. Figure 1–6(a) shows

the amplitude of oscillation A, offset of oscillation λ and paddle angle γ for a generic

oscillation. Figure 1–6(b) shows the paddle angle γ for two paddles with phase offset

δ = 20◦, period P = 0.5s, amplitude A = 120◦ and offset angle λ = 30◦. Usually,

a swimming gait corresponds to a particular combination of constant phase offsets.

The middle-off gait is the most commonly used on Aqua. The phase offset is zero

for all four corner paddles while the offset is 180◦ for the two middle paddles. This

gait has the advantage of exhibiting lower parasitic oscillations of the vehicle body,

due the periodic paddle thrust produced.

The period of oscillation represents the time to complete one full oscillation. It

is usually sets to a value between 0.2 and 0.6 s. The amplitude of oscillation A is

the total angle swept by the paddle during one oscillation. It is the main parameter

used to alter the thrust produced by each paddle. On the vehicle GUI, increasing the

speed of the vehicle implies increasing A. The offset of oscillation λ determines the

11



www.manaraa.com

direction along which the thrust is produced. With the current paddle configuration,

it is possible to change the offset angle of the paddles to produce a net force in five

of the six degrees of freedom: roll, pitch, yaw, heave and surge. Figure 1–7 shows

a description of each degree of freedom. A pitching motion is obtained by using

an offset angle for the front and rear flippers in opposite directions. For a rolling

moment, the offset angle of the right and left paddles are set in opposite directions.

The yawing motion is obtained by increasing or decreasing the thrust on one side

of the vehicle. Changing the thrust can be done by either changing the period or

amplitude of oscillation of the paddles. Finally, heave is produced by changing the

offset angle of all paddles by the same amount.

1.1.5 Experimental Setup

Figure 1–8 shows the general setup used when performing experiments with

Aqua. The upper Figure is a schematic of the set of the equipment and the lower

portion of the Figure shows an actual setup used during an experiment [17]. The

vehicle is connected to the Operator Control Unit(OCU) through a optical fiber. The

OCU is then connected to a laptop with a serial cable. There is a monitor on top of

the OCU that displays the images captured by the camera onboard Aqua. All the

information related to the state of the vehicle is transmitted to the laptop.

The pilot sees the actual and desired state of the vehicle on the GUI shown in

Figure 1–9(a). The pilot controls the vehicle using a gamepad as shown in Figure

1–9(b). The commands given by the human pilot are also displayed on the GUI. The

experimental setup will be revisited in Section 4.4.
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Figure 1–8: General experimental setup with Aqua. Credit: Olivia Chiu

(a) Graphical User Intergace(GUI) used on Aqua. (b) Gamepad used on Aqua.

Figure 1–9: GUI and gamepad used on Aqua. Credit: Olivia Chiu
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1.1.6 Aqua Applications

The Aqua underwater vehicle has already used successfully for a multitude of

underwater applications including person tracking, human-robot interaction, system

organization, modeling and image recovery. An algorithm to track human divers

was developed and implemented on Aqua by Sattar et al. [18, 19]. Their algorithm

detected the periodic motion of the legs of a human diver. This allows Aqua to

assist divers in their work by following them autonomously. In terms of system

organization, Dudek et al. presented behaviors and interaction modes for the Aqua

underwater vehicle [20]. With their work, the vehicle can now be controlled via visual

servoing using chromatic targets. They use markers provided by the ARTag toolkit

to communicate with the vehicle and program it during operation. Furthermore,

they developed an hovering gait for the vehicle. An empirical model of the vehicle

was also developed by Giguere et al. [21]. They characterized the rotational response

of the vehicle to relate the paddle motion to the rotational velocity of Aqua. This

model is accurate but it is not based on physics principles and excludes the linear

degrees of freedom. Finally, Aqua was used to collect underwater images and develop

an algorithm that corrects the colors in the images [22]. With this algorithm, the

images collected underwater were closer to those that would be collected under full

spectrum illumination.

1.2 Literature Review

This section reviews the work done by other researchers on subjects pertaining

to this thesis. It is partitioned into the six major subjects that are discussed in this

thesis: flapping foil propulsion, Vehicle modeling and design, control of conventional
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underwater vehicle, control of biomimetic underwater vehicle, time-periodic systems

and path optimization.

1.2.1 Flapping Foil Propulsion

Many scientists have studied flapping foils as a mean to produce thrust. One

of the key advantage of biomimetic propulsion is better maneuvrability and pos-

sibly better efficiency. Triantafyllou et al. produced a review of the research on

flapping foils [12]. Mittal et al. developped a numerical simulation to examine the

performance of a flapping foil [23] that was to be used on a biomimetic autnomous

underwater vehicle (BAUV). Schouveiler et al. studied the performance of a two de-

grees of freedom flapping foil. [24]. The fins moved in the heave and pitch direction

with the Reynold number held constant for each experiment. He also investigated

asymmetric paddle motion and found this to be a good method to produce side

forces. Licht et al. discussed the design and construction of an oscillating foil [15],

and estimated the performance of the foil. According to their evaluation, a robot

equipped with these foils could achieve a speed of 1 m/s. Harper et al. presented a

model in which springs are used to transmit forces to an oscillating foil [25]. They

presented the model as a set of ordinary differential equations, making it attractive

for control design. The springs are used to improve the energy efficiency of the sys-

tem. Guglielmini et al. described the vortex structure of a two degrees of freedom

foil [26]. They used vortex theory to quantify the thrust produced by the paddle. Al-

though this method will probably give the most accurate results, it is not suitable for

incorporation into a controller because it too computationally intensive. Yamamoto

et al. performed a feasibility study on the use of oscillating fins to produce thrust
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on a surface ship [27]. They studied the efficiency and power output of paddles with

different shapes and found that a rectangular paddle with 62.5% of its length flexible

gives the best efficiency. However, they also found that a paddle with 62.5% of its

length rigid gave the most propulsive power. Mollendorf et al. studied the deflection

of thin elastic beam subjected to fluid mechanical forces [28]. They compared their

deflection results with measurements taken from underwater video of fins worn by

a diver. Their model gave a good approximation of the deflection of a flexible fin,

but it is computationally demanding. Lu et al. studied the performance and vortex

shedding of an oscillating foil [29]. They studied factors such as frequency and am-

plitude of the oscillation. Schnipper et al. presented an experimental study of the

vortex wakes produced by an oscillating foil [30]. They found that it could have up

to 16 vortices per oscillation.

1.2.2 Biomimetic Vehicle Modeling and Design

There are still few underwater vehicles that use biomimetic propulsion system

although this number is increasing. Most of them are still at the design and con-

struction phase. Yu et al. developed a four-joint robotic fish and Triantafyllou et al.

designed an eight-joint robotic fish [13,14]. Deng et al. developed a microrobot that

uses single oscillating tail fin to produce thrust [31]. The control force was provided

by two independent side fins. Guo et al. also developed a microrobot but used two

tail fins to provide propulsive force and included a buoyancy adjuster [32]. Kemp

et al. built a vehicle named Madeleine that uses flexible four fins to generate both

propulsive and control forces [16]. Madeleine has the same general structure as Aqua

and its main physical difference is the number of paddles. Long et al. have found
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that the front paddles significantly reduced the efficiency of the rear paddles [33].

As a result, the Madeleine achieves the same maximum speed with either 2 or 4

paddles. However, swimming with only 2 paddles is more energy efficient. Licht

et al. designed and built a robot that mimics the locomotion of a turtle [34]. The

vehicle is trimmed unstable in pitch and yaw to make it more maneuverable. They

investigated different paddle motions and different turning strategies and found that

a smaller turning radius could be achieved using a banked turn rather than a level

yawing turn.

1.2.3 Control of Conventional Underwater Vehicles

Much of research has been done on the control of conventional underwater

robots. Yoerger et al. and Xu et al. used sliding mode theory to develop robust

trajectory tracking controllers for an underwater robot [35,36]. These controllers had

the advantage of dealing directly with nonlinearities and being robust to an imprecise

model. However, they also showed that the performance of the controllers is greatly

improved by a more accurate model. Smallwood et al. compared the ability of sev-

eral controllers to track a prescribed trajectory [37]. Their controllers were tested

on a conventional underwater robot as well as in simulations. They found that the

model-based controllers were capable of providing exact trajectory tracking. The

PD controller was able to provide velocity tracking but failed to track the position

accurately, though the position error remained bounded. Furthermore, they found

that increasing the PD gains improved the tracking performance.

Feng et al. designed a robust controller based on H∞ theory [38]. They used two

separate controllers for longitudinal and lateral degrees of freedom. The controllers
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were tested on a nonlinear simulation of the vehicle and the results showed that

the desired behavior could be obtained. Yuh described two controllers, nonlinear

and adaptive, used for the control of an underwater robot [39]. He concluded that

the nonlinear controllers provide good performance if the model parameters are well

known whereas the adaptive controller does not require good knowledge of the model.

Caccia et al. discussed the design, implementation and testing of a general purpose

control system for unmanned underwater vehicle [40]. They used a Lyapunov based

guidance system and a PI controller implemented in a two-layered hierarchical ar-

chitecture for closed loop control. Their approach was tested experimentally and

demonstrated good tracking results. Kwon et al. and Lee at al. designed autopilots

for an underwater vehicle using fuzzy logic [41,42]. One of the main features of their

controller was a collision avoidance system. Spangelo et al. also studied collision

avoidance, but using optimal control [43].

Yuh et al. and Zhao et al. developed a self-adjusting controller for an underwater

robot [44, 45]. They presented the theory for an adaptive plus disturbance obserber

(ADOB) and tested it experimentally. They obtained good tracking results but could

not get zero error. Ritonja et al. developed a simple adaptive controller for stability

augmentation [46]. Deng at al. designed a model output following control system

using a command generator tracker (CGT) for a system with time delays [47]. The

controller was tested in a dynamics simulation and they obtained good results.

Learning algorithms can also be used to control underwater vehicles. For ex-

ample, Coates et al. developed a learning control system for an helicopter [48, 49].

They were able to perform extreme acrobatic maneuvers with their control system.
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They also found that their controller performed better than their expert pilot. Also,

Jang et al. designed fuzzy logic controllers for a mobile robot [50]. The controller

could handle bounded disturbances and unstructured unmodelled dynamics. The

online tuning parameter algorithm required no off-line learning but guaranteed small

tracking errors. Although, these learning techniques have not been implemented on

underwater applications, they could likely be adapted to provide good performance

for underwater vehicle.

1.2.4 Control of Biomimetic Underwater Vehicles

Some researchers have considered the guidance and control of biomimetic ve-

hicles. Guo et al. developed a waypoint tracking controller, for a vehicle with

oscillating tail fin propulsion [51], based on hierarchical local and global controllers

so as to mimic fish behavior. The performance of the controller was evaluated in

simulation with good results. They also discussed the effect of model uncertain-

ties and disturbances on the control performance. Geder et al. developed a fuzzy

logic PID controller to control the trajectory of a vehicle with two pectoral fins [52].

Naik et al. studied the motion control of a fish-like robot in the yaw plane [53].

The motion of the vehicle was controlled by altering the motion of pectoral-like fins.

They used an adaptive control law and obtained good tracking results. Singh et al.

studied the motion control of a fish-like robot in the diving plane [54]. The control

force was obtained by altering the offset angle of the pectoral-like fins. Yu et al.

studied control of a fish-like robot using fuzzy logic and point-to-point control algo-

rithms [55,56]. They found those algorithms to be effective and reliable when tested

for different maneuvers and scenarios. Dong et al. designed a networked controller
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for a biomimetic robot fish [57]. Their robot had no onboard sensors and all the

information was provided by an external camera. However, the robot was not able

to track the target accurately.

1.2.5 Time-periodic systems

Aqua has the particularity of using oscillating fins to produce its thrust. A

direct consequence of this propulsion system is that the thrust is not constant but

time-periodic. As a result, we can treat Aqua as a time-periodic system. Floquet

control theory pertains to the control of time-periodic systems. Many researchers

have studied the theory of time-periodic systems and some have developed methods

to use Floquet theory to design controllers for these systems. Calico et al. developed

a method based on Floquet theory allowing a determination of the location of the

poles of the system [58]. Montagnier et al. discussed different approaches to find the

Floquet factors [59], putting an emphasis on finding real Floquet factors. Montagnier

et al. also studied various techniques to develop controllers using Floquet theory [60].

However, his research was theoretical and did not find applications. Acho et al. used

a H∞ controller to design tracking controllers for a time-periodic system [61]. He

obtained good results but his technique did not deal with the time-periodicity of the

system directly. Brockett discussed the linear theory pertaining to the approach to

obtain the Floquet factors [62]. Finally Cai et al. developed an efficient method to

compute the state-transition matrix [63]. This matrix is important in the design of

Floquet controllers.
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1.2.6 Path Optimization

Other researchers have studied path optimization for underwater vehicles. Pe-

tres et al. studied a path planning algorithm for an underwater robot using a fast

marching algorithm [64,65]. They used the water current and vehicle turn radius as

variables. Kanakakis et al. discussed path planning and navigation for autonomous

underwater vehicles [66]. The optimal path was found using a genetic algorithm and

controllers based on fuzzy logic. The optimizer took into consideration the physical

limitations of the vehicle and its maneuvring characteristics. Khanmohammadi et al.

studied the path optimization in a horizontal plane for a thruster-based underwater

vehicle [67]. An energy performance index was minimized. A conjugate gradient

method, a genetic algorithm (GA) and particle swarm optimization (PSO) methods

were applied to solve the problem. They found that the GA and PSO gave better so-

lutions. Shamir studied the overtaking of a slower vehicle [68]. Karush-Kuhn-Tucker

and Lagrange methods were considered but were found to be extremely difficult to

use for this problem. Instead, the optimization software Lingo was used. Guo et

al. studied path planning optimization for underwater robots using particle swarm

optimization (PSO) [69]. They concluded that PSO was a good technique for that

application. Lambert et al. studied the optimization of a U-turn maneuver for a

towed underwater vehicle [70]. The algorithm used to perform the optimization was

Powell’s Conjugate Direction method. Kim at al. studied the optimization of a robot

fish velocity using a genetic algorithm [71]. The objective was to find the best motion

of the vehicle to maximize the speed.
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1.3 Claim of Originality

A summary of the main contributions of this thesis is as follows:

• Development of advanced trajectory tracking controllers for a biomimetic un-

derwater vehicle including a model-based controller, an adaptive controller and

a controller based on Floquet theory.

• Experimental study of the performance of the trajectory tracking controllers

for a biomimetic vehicle.

• Optimization of a U-turn maneuver to improve the performance of coral reef

inspection.

• Development of a flexible paddle model that computes the thrust produced by

an oscillating paddle. This was followed by the development of a reverse paddle

model that determines the paddle motion to produce a desired thrust.

• Experimental validation of the dynamics model of the Aqua biomimetic under-

water vehicle.

• Linearization of the time periodic nonlinear vehicle model using a novel tech-

nique of average response to perturbations.

1.4 Thesis Motivations and Organization

The overall objective of this thesis is to develop controllers for biomimetic au-

tonomous underwater vehicles (BAUV). There has been little research done on the

control of flapping foil vehicle and this research aims to establish a base for the con-

trol of these vehicles. We developed four classes of controllers to provide trajectory

tracking capabilities for the Aqua underwater vehicle. The results of this thesis will

probide a better knowledge of which control techniques to use for a BAUV.
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In Chapter 2, we describe the development of a dynamics model for the Aqua

underwater vehicle. We first discuss a body model that predicts the motion of the

vehicle based on its physical parameters and the forces and moments applied to it.

This is followed by the development of a forward paddle model that predicts the

thrust produced by the paddles based on the paddle motion. These two models are

implemented into a computer simulation programmed in MATLAB Simulink. These

models are also used in the controller development. They are validated experimen-

tally and their accuracy is proven. Finally, the vehicle dynamics model is linearized

to for application with controllers that require a linear model.

Chapter 3 covers the theory behind the different controllers developed in this

thesis. We begin by defining the input to the controllers and then describe each class

of controllers. The first class is PID and this is the only class of controllers studied

that does not require a dynamics model. The second class is model-based controllers

in which the force is based on the dynamics model of the vehicle. The third class is

based on adaptive control: controllers that update themselves based on the model

and the error signals. The fourth and final class is Floquet based controllers that

use the theory of time-periodic systems to deal explicitly with the oscillating thrust

produced by the paddles.

In Chapter 4, the controllers are tested in the dynamics simulation and experi-

mentally. We start by discussing how the theory presented in Chapter 3 was applied

to the Aqua underwater vehicle. We then introduce the trajectories that were tested
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in the simulation and in the experiment. The simulation results are shown first be-

cause the simulation was used to tune the control gains. Finally, we present the

results of the experiment conducted in open water.

An optimization of a high performance maneuver, a U-turn, is discussed in

Chapter 5. The objectives of the optimization are discussed followed by a description

of the design variables used in the optimization. We then describe the controller that

was used during the optimization. This is followed by a discussion of the performance

metric and of the optimization constraints. The optimization technique, a genetic

algorithm, used to solve our problem is also described in this chapter. Finally, the

optimization results are presented and analyzed.

In chapter 6, the conclusions drawn in the thesis are revisited and recommen-

dations for future work are presented.

24



www.manaraa.com

CHAPTER 2

Modeling
Before developing controllers for our underwater vehicle, it is necessary to first

study the dynamics of the system. An accurate dynamics model will give information

about the natural stability of the system and it could be used as a testbed for

controllers. As was mentioned in Section 1.2, many researchers have studied the

dynamics of underwater vehicles [13, 15, 16, 32, 72–74] and of oscillating fins [12, 14,

15, 25–27, 31, 33, 73, 74]. These models can provide useful insight but they are not

directly applicable to our vehicle. Another issue is that most authors use empirical

formulas to predict thrust generated by fins and it is impossible to adapt their model

for other fins.

This chapter discusses the modeling of the Aqua underwater vehicle. The model

can be separated into two parts: the body model and the forward paddle model. The

body model determines the external forces applied to the body of the vehicle and

calculates the resulting velocities and positions. The forward paddle model uses the

paddle motion to determine the forces and moments produced by the oscillating

paddles. The body model is based on the approach proposed by Fossen in which the

hydrodynamics derivative are computed using empirical values for a bluff rectangular
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body [72], and adapt this to our vehicle, as described in Section 2.1. The paddle

model is based on the approach by Georgiades in which the lift and drag forces

produced by the oscillating paddle are computed at every instant and transformed

into thrust and torque [74]. A limitation of that model was that it was assumed

that the paddle was fully rigid when in reality, a part of the paddle is flexible. The

forward paddle model described in Section 2.2 takes into account the deformation of

the paddle as it oscillates through the water. The forward paddle model was then

used to create an inverse paddle model that takes the desired thrust as input and

ouputs the required paddle motion, as discussed in Section 2.5. The models were

implemented in MATLAB Simulink to create a dynamics simulation (Section 2.3)

that was then validated in Section 2.4. Finally, in in Section 2.6, the nonlinear model

was linearized to facilitate the design and analysis of controllers.

The models developed in this chapter can be used in the design of model-based

controllers for the Aqua underwater vehicle. Moreover, the dynamics simulation will

later be used to tune the controllers’ gains and as a testbed for the controllers.

2.1 Body Model

As was mentioned previously, the dynamics model of the whole vehicle is com-

posed of the paddle model and of the body model. In this section, we describe the

body model for the Aqua underwater vehicle, which allows us is to compute the

position and velocity of the vehicle from the forces exerted on it. The body model

is based on the work of Georgiades et al. [73, 74] and Fossen [72].

The robot has six degrees of freedom, and we consider two relevant reference

frames of interest. The first one, RV , is the robot frame and has its origin at the
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Figure 2–1: Six degrees of freedom of the vehicle. Credit: Christine Georgiades

centre of mass of the robot. As shown in Figure 2–1, the x-axis is pointing toward the

front of the vehicle, the z-axis toward the center of the Earth and the y-axis follows

the right-hand rule convention. The second one, RI , is the inertial coordinate frame

and has its origin at a fixed arbitrary point on the water surface. Euler angles

(φ, θ, ψ) are the angles between the RI and RV coordinate frames, where φ is the

roll angle, θ the pitch angle and ψ the yaw angle [72]. The motion of the robot in the

6 degrees of freedom can then be described by the following vectors and matrices:

n1 =

[
X Y Z

]T
n2 =

[
φ θ ψ

]T
s =

[
X Y Z φ θ ψ

]T
(2.1)
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v1 =

[
u v w

]T
v2 =

[
p q r

]T
v =

[
u v w p q r

]T
(2.2)

The position defined in (2.1) is expressed using components in RI while the

velocity of the vehicle defined in (2.2) is expressed as components in RV . They are

related by a transformation matrix:

ṡ = J(n2)v =

 J1(n2) 0

0 J2(n2)

v (2.3)

J1(n2)=



cos(ψ) cos(θ) − sin(ψ) cos(φ)+cos(ψ) sin(θ) sin(φ) sin(ψ) sin(φ)+cos(φ) cos(ψ) sin(θ)

sin(ψ) cos(θ) − cos(ψ) cos(φ)+sin(ψ) sin(θ) sin(φ) − cosψ) sin(φ)+cos(φ) sin(ψ) sin(θ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)


(2.4)

J2(n2) =


1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 (2.5)

The dynamics model takes into account the Coriolis forces, the hydrodynamic

forces and the inertia:

Mv̇ + C(v)v + D(v)v + g(n2) + b(n2) = f (2.6)
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where f =

[
Fx Fy Fz Mx My Mz

]T
is the vector of forces and moments pro-

duced by the paddles in the six degrees of freedom, M is the 6 x 6 mass matrix

including added mass, C(v) is the 6 x 6 Coriolis matrix, D(v) is the 6 x 6 hydro-

dynamic matrix, g is the gravitational force vector, b is the buoyancy force vector

and v and n2 are defined in (2.2). In the simulation, it is assumed that the cen-

tre of gravity is coincident with the centre of buoyancy. As a result, the buoyancy

and gravity forces cancel each other. In practice, they are never exactly coincident

because the mass distribution changes depending on which batteries, set of paddles

and other pieces of equipment are installed. Since the robot is immersed in water,

the Coriolis and mass matrices include a rigid body and an added mass component.

The rigid body part can be understood as the mass of the robot in a vacuum, while

the added mass part models added inertia due to the motion of the robot through

the fluid. According to Fossen [72], assuming that there are three planes of sym-

metry and that the vehicle is moving at low speed, the mass matrix, including the

rigid-body and added mass, is diagonal. The hydrodynamic matrix is also a diagonal

matrix. However, the Coriolis matrix C(v) has off-diagonal terms and is responsi-

ble for the coupling between the 6 degrees of freedom. Moreover, the Coriolis and

hydrodynamic matrices contain the velocity vector. As a result, these two terms

are responsible for the nonlinearity of the system. The parameters in the different

matrices were obtained using empirical results for a solid rectangular prism [72].
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M =



m−Xu̇ 0 0 0 0 0

0 m− Yv̇ 0 0 0 0

0 0 m− Zẇ 0 0 0

0 0 0 Ixx − Lṗ 0 0

0 0 0 0 Iyy −Mq̇ 0

0 0 0 0 0 Izz −Nṙ


(2.7)

D(v) =



−Xu2 |u| 0 0 0 0 0

0 −Yv2 |v| 0 0 0 0

0 0 −Zw2 |w| 0 0 0

0 0 0 −Lp2 |p| 0 0

0 0 0 0 −Mq2 |q| 0

0 0 0 0 0 −Nr2 |r|


(2.8)

C(v)=



0 0 0 0 (m−Zẇ)w −(m−Yv̇)v

0 0 0 −(m−Zẇ)w 0 (m−Xu̇)u

0 0 0 (m−Yv̇)v −(m−Xu̇)u 0

0 (m−Zẇ)w −(m−Yv̇)v 0 (Izz−Nṙ)r −(Iyy−Mq̇)q

−(m−Zẇ)w 0 (m−Xu̇) −(Izz−Nṙ)r 0 (Ixx−Lṗ)p

(m−Yv̇)v −(m−Xu̇)u (Iyy−Mq̇)q 0 −(Ixx−Lṗ)p 0



(2.9)

where m is the mass of the vehicle, Ixx, Iyy and Izz are the moments of inertia of the

vehicle about the x, y and z axes. Xu̇, Yv̇, Zẇ, Lṗ, Mq̇ and Nṙ are hydrodynamics
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derivatives. The moments of inertia and the mass of the vehicle were evaluated using

CAD drawing of the vehicle. The hydrodynamics derivatives were obtained using

strip theory for a rectangular box based on experimental data for submerged body

[72,73]. The form of (2.8) implies that the velocity in one degree of freedom creates

hydrodynamic force only in that degree of freedom. This was used for simplicity to

facilitate the calculation of the hydrodynamic forces by Georgiades [73]. In reality,

the hydrodynamic forces are determined by the magnitude of the total velocity vector

in three degrees of freedom.

Using (2.6), with the motion of the robot known, we only need an expression

for f, the forces and moments produced by the paddles in order to determine the

acceleration of the robot, by solving (2.6) for v̇ to obtain v̇ =

M−1 [f−C(v)v−D(v)v− g(n2)− b(n2)].

2.2 Forward Paddle Model

As was mentioned in Section 1.2.1, one of the key advantage of flexible paddles

over rigid ones is the increase in efficiency. This section describes the forward paddle

model used in the dynamics simulation to predict the force produced by an oscillating

flexible paddle. It computes the thrust based on a known paddle motion defined by

the amplitude, period and oscillation offset. The forward model for our flexible

paddle is based on work done by Georgiades et al. on the modeling of a rigid non-

tapered oscillating paddle [73,74]. However, the original model was unusable for the

flexible tapered fins used on Aqua. In our model, we consider a tapered paddle of

length l with the narrower and wider widths being w1 and w2 respectively as shown in

Figure 2–2. The axis of rotation is along the hip, at the narrower end of the paddle.
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Figure 2–2: Top view of the flexible paddle, showing its discretization

The paddle is composed of two parts, each with different mechanical properties. The

first extends from the hip up to 90% of the length and can be considered rigid. The

remaining 10% is flexible and deflects as it oscillates through water. To account

for the rigid and flexible parts, and to maintain some generality, the paddle was

separated into 100 elements of equal length, the first 90 are rigid and the remaining

10 being flexible.

Figure 2–3 shows the forces, the flow velocity and the relevant angles on the

paddle. Figure 2–3a shows the three forces that bend the paddle and Figure 2–3b

shows the forces that will produce the net thrust. The thrust line is the line about

which the paddle oscillates and it determines in which direction the net thrust will

be produced. The paddle was modeled as a cantilevered beam attached at the hip

joint. From Figure 2–3b, we see that the flow velocity U is made of two components.

The normal velocity is due to the rotation of the paddle. The inflow velocity, which

is due partly to the water entrained by the paddle motion, and partly due to the

vehicle motion, is discussed in detail in Sections 2.2.1 and 2.5.3. As shown in Figure
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Figure 2–3: Forces, flow velocity and angle on the paddle

2–3a, three main forces act on the paddle: the motor torque (τ), the distributed

hydrodynamic force perpendicular to the paddle (Hi) and the reaction force R acting

at the hip joint. The hydrodynamic force is a combination of lift and drag forces.

From Figure 2–3b, Hi is:

Hi = Li cos(αi) +Di sin(αi) (2.10)

where Li is the lift force, Di the drag force and αi the angle of attack shown on

Figure 2–3b. The subscript i represents the i’th element. Li and Di are obtained

as discussed below. Then by assuming that the paddle inertia is negligible, we can

write the bending moment equation:
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Mi = −τ +
100∑
j=1

Hjxi +
i∑

n=1

Hn(xi − xn) xi ≥ xn (2.11)

where xi is the position of the i ’th segment and Mi is the bending moment at the i’th

segment. xi and xn can be understood better using Figure 2–3a: xi is the position

of the segment where we are calculating the bending moment and xn is the position

of the force that is creating this moment. We know from visual observation that the

deflection angle of the paddle remains small during operation. Therefore, we can use

elastic bending theory to relate bending moment to paddle deflection:

Mi = EI

(
∂2y

∂x2

)
i

(2.12)

where E is the modulus of elasticity, I is mass moment of inertia of the paddle at

a point x along it, while y is the deflection at that point. Equation (2.12) is inte-

grated to obtain the first derivative of y with respect to x. We obtain the boundary

conditions by considering the junction between the rigid and flexible part, at which

point there is no deflection and the slope is zero. We can thus find the slope of the

paddle at any point as:

ζi = tan−1(∂x
∂y

)i =

tan−1( 1
2EI

[(2τxi −Rx2
i ) +

∑i
n=1Hn(xn − xi)2

−2τx90 +Rx2
90 −

∑90
n=1 Hn(xn − x90)2])

(2.13)

where ζi is the local deflection angle and x90 is the x -location of the juncture of

the rigid and flexible parts of the paddle. In the rigid paddle model developed by

Georgiades et al., it was assumed that the angle between the paddle and the thrust
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line was constant along the paddle and equal to the angular position γ [74]. However,

in the case of a flexible paddle, this is only true for the rigid part of the paddle. For

the flexible part of the paddle, the angle of attack takes the following form:

αi = β − (γ + ζi) (2.14)

where β is the angle between the thrust line and the flow and γ is the angle between

the paddle and the thrust line as shown in Figure 2–3b. In Figure 2–3b, the thrust

line is coincident with the z -axis. Once we know the angle of attack at any location

along the paddle, the lift and drag forces can be deduced using the usual equations:

Li = 0.5ρSiCLiU
2
i

Di = 0.5ρSiCDiU
2
i

(2.15)

where ρ is the density of the surrounding fluid, Si is the surface area of the element,

Ui is the local velocity and CLi and CDi are the local lift and drag coefficient. The

local velocity Ui is comprised of the velocity of the paddle and the inflow velocity.

The local lift and drag coefficient are sinusoidal functions of the angle of attack, as

described by Georgiades et al. [73, 74] and Healey et al. [75]. The results by Healey

were verified experimentally for a propeller and his model was found to be accurate.

Furthermore, Georgiades applied this method to a rigid oscillating paddle and found

good correspondence to experimental tests. Then by using (2.14), (2.15) and simple

geometry, we can obtain the thrust equation:

T =
∑
i

[Di cos(βi)− Li sin(βi)] (2.16)
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Figure 2–4: Diagram showing the frontal area of the paddle. Credit: Christine Georgiades

where T is the total thrust produced by the paddle. Since βi is time-periodic, we

can easily deduce from (2.16) that the thrust will be time-periodic.

2.2.1 Inflow Velocity

In theory, a paddle performing a symmetric oscillation in a fluid with zero inflow

velocity produces no thrust [74]. However, as observed in experiments, an oscillating

paddle does produce thrust even in a tank of stagnant water, implying that the

paddle produces its own inflow [74]. Therefore, a method to evaluate the inflow

velocity needs to be found. During the stroke or recovery phase (half-period), a

volume of fluid is displaced by the paddle and fluid in front of the paddle replaces

it, causing inflow. The fluid comes in through an area denoted as the inlet area Af .

In [73], this was called frontal area because it was presumed that flow entered from

the front of the paddle as shown in Figure 2–4. Mathematically, this can be written

as:
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2V

P
= Afvin (2.17)

where V is the volume of water displaced by the paddle, P is the period for a

complete oscillation and vin is the inflow velocity. The volume of water displaced by

the paddle in one half-period is:

V =

∫ A

0

∫ l

0

w(x)xdxdθ =
(w1

6
+
w2

3

)
l2A (2.18)

where A is the amplitude of oscillation, w(x) is the width of the paddle at distance

x from the hip and θ is angle swept by the paddle.

In the present work, the inlet area for the inflow was different than that used

in [73] and was instead defined so as to obtain agreement between simulation and

experimental data. The following form was deduced in order to match the simulated

average thrust and the corresponding experimentally obtained thrust for different

oscillation amplitudes and periods:

Af = (
w1 + w2

2
)
l

2
A (2.19)

This represents the area swept by the paddle at half-length. Using (2.16), (2.18)

and (2.19), an expression for the inflow velocity can be obtained:

vin =
4l

3P

w1 + 2w2

w1 + w2

(2.20)

As can be seen in equation (2.20), the inflow velocity depends only on the

period of oscillation and on the geometry of the paddle, but not on the amplitude
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of oscillation. Moreover, we have to keep in mind that (2.20) represents an average

inflow velocity. In the case of our oscillating paddle, the inflow velocity is likely to

be periodic with an average equal to (2.20).

More accurate models of the inflow velocity could be derived using computa-

tional fluid dynamics(CFD) or vorticity-based methods. However, the model pre-

sented in this section has the advantage of being simple. Moreover, it would be

useful to measure the inflow velocity experimentally in the future.

2.3 Dynamics Simulation

This section discusses the dynamics simulation of the Aqua underwater vehicle

that is comprised of the body model (Section 2.1) and the forward paddle model

(Section 2.2). There are three main uses for this simulation: to help validate the

models discussed in Sections 2.1 and 2.2, to develop controllers for the vehicle and to

act as a testbed for future experiments. The simulation was programmed using the

MATLAB Simulink software environment and was based on the dynamics simulation

developed by Georgiades [73]. A snapshot of the Simulink screen can be seen in

Figure 2–5. The inputs to the simulation are the paddle amplitude, period and

offset of oscillation as well as the initial state of the vehicle. The initial state refers

to the initial velocity and position of the vehicle in their respective coordinate frame.

The simulation outputs the state of the vehicle, the paddle angles and the paddle

forces.

The first step in the simulation is to use the paddle parameters (amplitude,

period and offset) to compute the paddle trajectory in a continuous form, γ =

A
2

sin
(

2π
P

)
+ λ. More information about this step can be found at [73]. The model
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Figure 2–5: The MATLAB Simulink simulation of the vehicle

described in Section 2.2 is then used to calculates the paddle forces and moments (f)

in the six degrees of freedom. Finally, the force f serves as the input for (2.6) that

outputs the acceleration of the vehicle. The velocity and position of the vehicle can

then be obtained by integration of the acceleration.

2.4 Model Validation

This section describes the experimented performed to validate the paddle and

vehicle model. The objective was to confirm that the models were accurate in pre-

dicting the behavior of the actual system. The first part of the section discusses the

validation of the paddle model where we evaluate the thrust produced by paddle.

In the second part, the body and paddle models were combined to form the vehicle

model. The vehicle model was validated by comparing the motion of the vehicle in
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Figure 2–6: Picture of the thrust measuring setup in a stagnant water tank. Credit: Christine
Georgiades

simulation and experiment, for the same input paddle motion. Proper validation of

the simulation will give us confidence that we can use our dynamics model to design

controllers and as a general testbed for the vehicle.

2.4.1 Validation of the paddle model

The experimental data used to validate the paddle model was obtained from

experiments conducted by Georgiades [73, 74]. The testbed was a stagnant water

tank having a length of 6m, a width of 1.5m and a depth of 1.2m as shown in Figure

2–6. A force/torque sensor located at the paddle hip recorded the force produced

by the paddle and an encoder recorded the paddle motion. The only inflow into the

paddle was due to the paddle motion. The experiment was performed with a single

paddle.

The experimental results obtained in the stagnant water tank were compared to

those obtained in a simulation based on the model described earlier in Section 2.2.

The simulation was developed using MATLAB Simulink. The paddle parameters
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P(s) A(◦)
0.4 7.3, 9.1, 10.4, 12.3
0.6 14.8, 20.3
0.8 25.3, 32.2, 38.6, 44.2
1.0 31.3, 40.6, 47.6, 55.9

Table 2–1: Amplitude and period of oscillation used in the forward model validation

used in the simulation were l=0.2m, w1=0.04m, w2=0.07m, CDmax = 1.11, CLmax =

1.2 and EI =0.05Nm2. CDmax and CLmax are the maximum values for the lift and

drag coefficient. They are used to calculate the instantaneous lift and drag coefficient

used in (2.15) to compute the lift and drag force. It assumes that the lift and drag

coefficients are continuous functions of the angle of attack [73,75] The last parameter,

EI, was obtained experimentally by applying loads to the paddle and measuring its

deflection. The values of P and A that were used in the experiment are tabulated in

Table 2–1.

As shown in Figures 2–7 and 2–8, the simulation results closely matched the

experiment. Figure 2–7 shows that the average thrust produced by the paddle in-

creases with the amplitude of oscillation for a given period, and that thrust increases

with frequency of oscillation. The average thrust is obtained by computing the

time-averaged thrust once steady-state is reached. We also see in Figure 2–8 that,

although the experiment slightly overshoots the simulation, the instantaneous thrust

is very similar. From this, we can conclude that the flexible paddle model accurately

predicts the thrust produced by an oscillating paddle, and that the model can be

used with confidence in the controller development. The next step is to find a rela-

tion that relates the paddle motion to the thrust. This relationship will be used in
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Figure 2–7: Comparison of experimental and simulated average thrust

Figure 2–8: Comparison of experimental and simulated instantaneous thrust for A= 30◦ and P=0.4s
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Figure 2–9: Average thrust as a function of the mass flow rate

Section 2.5 to create an inverse model that takes the thrust and finds the appropriate

paddle motion.

We know from momentum theory for traditional propellers that the thrust pro-

duced is proportional to the mass flow rate of fluid being accelerated. Therefore, we

plotted the thrust as a function of the mass flow rate, with the mass flow rate defined

as ρAfvin. The data points shown in Figure 2–9 include experiments performed at

4 different oscillation frequencies and 14 different oscillation amplitudes. As shown

in Figure 2–9, this appears to show a linear relationship between the two variables.

A linear regression gives us the thrust as a linear function of the mass flow rate:
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T = K1ρAfvin +K2 = 0.1963ρAfvin − 0.1554 (2.21)

where T is the thrust produced by the oscillating paddle in Newton and ρ is the

density of the fluid. It is important to note that equation (2.21) is valid only for a

certain range of mass flow rate and that the inflow velocity vin is along the thrust

line. From Figure 2–9, this range is from 0.75 kg/s to 2.35kg/s. Beyond that range,

we have no guarantee that (2.21) gives an accurate evaluation of the thrust. By

combining (2.19), (2.20) and (2.21), we obtain an expression for thrust that depends

only on paddle parameters:

T = 0.1963
(w1 + 2w2) l2

3
ρ
A

P
− 0.1554 (2.22)

It is important to note that this model is not perfect and does not capture

paddle interference or relative flow angle. However, it has been found to be accurate

for our purpose.

2.4.2 Validation of the vehicle model

The vehicle model is used to develop controllers and to assess the performance

of the vehicle during maneuvers. In order to use the model with confidence, it

must be validated experimentally. The objective of the validation is to validate the

model components, body and paddles, as well as the overall model. Ideally, the

onboard sensors would record all the vehicle states of the vehicle and it would be

straightforward to compare them with those in the simulation. However, the vehicle

has limited sensing capabilities and some states cannot be measured, and we had to

develop indirect methods to evaluate them.
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Constant Speed Validation

The forward speed is the principal motion we control on Aqua and it is therefore

important that the simulation closely match the actual vehicle. In this section, we

present the results of the constant speed validation experiment, in which the objective

is to compare experimental speed data with our simulation results. The experiment

assumes that we have steady speed, steady drag force and a steady paddle thrust.

The forward speed depends on the paddle amplitude and period of oscillation.

Aqua does not have onboard sensor to directly measure its speed. In principle,

the IMU’s accelerometer signal could be integrated to obtain the speed but the mea-

surements are noisy and any bias introduces drift in the integrated signal. Therefore,

we chose to measure the speed by external observation. The vehicle was placed in

the water at one end of a pool of 25m length and then driven in straight line toward

the other end of the pool. Using a stop watch, the time taken to travel between

two points was measured. The average velocity was then defined as the distance

between the points divided by the time taken to travel the distance. We ensured

that the vehicle was no longer accelerating between those two points. Therefore, this

experiment only validates those parts of the model that affect the steady forward

motion of the vehicle (i.e., not the mass/inertia characteristics). The measurement

was repeated 3 times for each paddle motion (amplitude, period), and an average

was used to calculate the speed, thereby reducing the measurement uncertainty. The

average velocity varied by about 3% between the three repetitions. The differences

can be due to a number of factors such as water turbulence or inaccuracies in man-

ual stopwatch triggering. The accuracy could be improved by improving the sensing
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Amplitude(deg) Period(s) Simulation(m/s) Experiment(m/s)
25 0.4 0.6 0.58
21 0.4 0.55 0.54
21 0.3 0.66 0.65
18 0.3 0.62 0.61
22 0.3 0.67 0.67
20 0.2 0.82 0.80

Table 2–2: Experimental and simulated speed for different paddle motion

capabilities of the vehicle and enabling accurate speed measurements. This would

remove the need from external speed measurement techniques.

Table 2–2 shows the vehicle speed obtained in the experiment and in the simu-

lation for different combinations of paddle amplitude and period of oscillation. The

first thing to notice is that the simulation closely matches the experiment. More-

over, the velocity increases with amplitude of oscillation and decreases with period

of oscillation. This was expected since the velocity is directly related to the force

produced by the paddles, and the force had been shown to vary similarly in Section

2.4.1 and in (2.22).

As was mentioned previously, we do not have an onboard sensor to measure the

speed of the vehicle, and therefore cannot measure its speed during operation. The

data presented in Table 2–2 could be used to approximate the speed of the vehicle

at steady-state by inferring from it an equation relating the paddle motion to the

speed. To do this, we referred to the flexible paddle model that predicts the thrust

produced by the oscillating paddles. We found in Section 2.4.1 that the thrust was

proportional to the ratio of amplitude over period. Moreover, at steady-state, we

can assume that the only longitudinal forces acting on the vehicle are the paddle
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forces and the drag force, and that these are equal and opposite. The drag force is

proportional to the square of the velocity. In mathematical term, this gives:

Fdrag ∝ u2, Fpaddle ∝ A
P
, Fpaddle = Fdrag (2.23)

Since these are the only forces acting on the vehicle in steady forward cruise,

(2.23) suggests that the velocity of the vehicle should be proportional to the square

root of the ratio of amplitude over period. Figure 2–10 shows the vehicle velocity

as a function of
(
A
P

)1/2
and we can see that there is indeed a linear relationship

between the two variables. By performing a linear regression on the data we can

obtain equation for the speed of the vehicle as a function of the paddle motion:

usim = (0.7345
√

A
P
− 0.155)m

s

uexp = (0.7254
√

A
P
− 0.155)m

s

(2.24)

where usim and uexp are the vehicle velocities from the simulation and experiment.

The relationships in (2.24) are only valid for the range of period and amplitude

presented in Table 2–2. Clearly, the velocity should be zero when
√

A
P

approaches

zero but (2.24) contradicts that. This is because for smaller A
P

, we do not have any

data and the relation presented in (2.24) is likely no longer valid.

From the results presented in Table 2–2 and Figure 2–10, we can conclude that

the dynamics model closely matches the experiment under these conditions. More-

over, (2.24) can be used to deduce the steady-state speed of the vehicle during oper-

ation.
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Figure 2–10: Experimental and simulated speed of the vehicle in function of the amplitude over
period square

Roll Validation

In this section compare the simulation and experimental results in roll maneu-

vers. A good match will imply accuracy of the paddle model, the roll inertia and the

drag properties of the vehicle. Moreover, the accuracy of the simulation depends on

the accuracy of the paddle model described in Section 2.2. The paddle model was

never validated for a rotation maneuver and this could therefore negatively affect the

validation in the roll motion.

Aqua has accurate sensors to measure the roll rate and roll angle. The vehicle

was run in pool tests and the pilot performed roll maneuvers while the pitch and yaw

motions were left uncontrolled. We recorded the roll angle, roll rate and the paddle

motion as well as the commanded roll from the pilot’s joystick.
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In order to compare the experimental data to the simulation, we ran the simu-

lation using the paddle motion recorded during the experiment, so that the input is

the same in both cases.

We placed priority on comparing the roll rate rather than the roll angle for two

reasons. First, the roll rate is part of the equation of motion of the vehicle and

it directly affects the dynamics of the system, while the roll angle only affects the

dynamics indirectly through the kinematics. Second, the roll angle measurement is

less accurate than the roll rate measurement because it is obtained by fusing the low

frequency accelerometer measurement with the integral of the roll rate measurement

(i.e. the roll angle is not measured directly). Therefore, any bias in roll rate would

be integrated and would result in a growing roll angle error. However, the opposite

behavior can be observed in Figure 2–12 and we see that the simulation is drifting

while the experiment returns to zero. The general motion is similar but there is

an offset between the simulated and experimental roll angle. One reason to explain

this phenomenon could be explained by the slight asymmetries of the vehicle. In

the experiment this is compensated by the pilot who tried to keep the vehicle level

before starting the maneuvers. The simulation currently assumes that the vehicle

is perfectly symmetric. Therefore, the pilot compensation has the effect of creating

a drift in the simulation. To confirm that, we changed the lift coefficient by 10%

and the length of the paddle by 2% and we observed a change in the motion of the

vehicle while performing a maneuver.

Figure 2–11 shows the results of the roll validation experiments. We can see the

simulation closely matches the experiment in the four trials shown on the figure. Even
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Figure 2–11: Experimental and simulated roll rate for 4 different roll trajectories.

Figure 2–12: Experimental and simulated roll angle for 4 different roll trajectories.
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in the presence of sharp change in roll rates, the simulation follows the experimental

data. However, the match is not perfect there are small discrepancies between the

experiment and simulation. It is also important to note that we do not possess all

the initial information about the system. The forward velocity has an impact on

the thrust produced by the paddles and that affects the roll motion. In the previous

section, we saw that we were accurate in terms of steady-state velocity. However,

while performing a maneuver, the velocity will change and we do not know how

accurate our model is in this case. Moreover, in the simulation, the vehicle is assumed

to be in an ideal environment with no disturbance, while in the pool, the vehicle may

be subject to disturbances that are unpredictable. Moreover, some differences may be

due to unsteady effects such as unsteady hydrodynamic or interference effects. Based

on the results shown in Figure 2–11, we can conclude that the model demonstrates

good correspondence to te real vehicle in roll maneuvers.

Pitch Validation

In this section we present a comparison of the simulation and experimental

results in pitch maneuvers. As was the case for the roll validation, a good match de-

pends on the accuracy of the paddle model, the pitch inertia and the drag properties

of the vehicle.

As was the case for the roll motion, the onboard sensors provide all the nec-

essary information to perform the validation. The vehicle was tested in pool trials

and the driver performed pitch maneuvers while the roll and yaw motions were left

uncontrolled. Again, the experimentally measured paddle motion was used as the

input to the simulation.
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In all three maneuvers the vehicle was controlled by a human pilot. In the first

two maneuvers, the vehicle was initially left uncontrolled. Then, the pilot sent open

loop control signals to make the vehicle pitch. These pitching commands were sent

between t = 6s and t = 19s for the first maneuver and between t = 10s and t = 20s

for the second maneuver. In the third maneuver, no control signal was sent from the

pilot to the vehicle.

We placed the priority on comparing the pitch rate rather than the pitch angle

for similar reasons to those mentioned in the roll validation section. The pitch rate

is shown in Figure 2–13. In Figure 2–13a, the match is acceptable but in the two

others, there is almost no match at all.

It was not possible to use large values of pitch rate because we were concerned

about hitting the bottom of the pool if the pitch angle was allowed to grow too

much. Moreover, climbing to the surface is also a problem since the simulation does

not model the water surface. At the surface, the vehicle cannot continue pitching

up, even if the paddle motion implies that it should.

In Figure 2–13, we can particularly observe the presence of pitch rate oscillations

that are larger in the experiment than in the simulation. This oscillation is due to

the vehicle’s reaction to the motor torque. The differences in oscillation amplitude

present in Figure 2–13 are likely due to a difference in this torque.

Figure 2–14 shows the match in pitch angle. We can see that there is not a

good match between the simulation and experiment. This is due to the fact that any

mismatch in pitch rate was integrated and grew over time. Moreover, disturbances
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Figure 2–13: Experimental and simulated pitch rate for 3 different pitch trajectories.

Figure 2–14: Experimental and simulated pitch angle for 3 different pitch trajectories.
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in the experiment could not be accounted precisely in the simulation and caused

differences between the two.

We investigated whether the match in pitch could be improved by modifying

the simulation parameters pertaining to the pitch motion. These include the pitch

moment of inertia, the added mass coefficient pertaining to the pitch motion, the drag

coefficient and the motor torque. The pitch moment of inertia was initially obtained

from the CAD model of the vehicle. However, components have been moved and it

is possible that there is an error in our value. The added mass and drag coefficients

were obtained based on a rectangular box shape vehicle. Since Aqua has rounded

shape ends, it is likely that the drag and added mass coefficients would be lower than

for a rectangular box.

Figure 2–15 and 2–16 shows the results of the pitch validation experiment using

the modified parameters. The moment of inertia was left unchanged because it

had little impact. The drag coefficient of the paddle was reduced by 10% and the

motor torque was adjusted to match the one deduced from experimental results.

Previously, the motor torque was evaluated by the simulation with a PD controller:

τ = kdτ (γ̇d − γ̇) + kpτ (γd − γ). By varying the motor torque gains, kdτ and kpτ , we

can adjust the torque produced by the motors. That torque was different from the

one calculated from the measured motor current. The current is computed using the

motor model from the manufacturer and the angular velocity of the paddle [11]. We

chose the motor torque gains so that the experimental and simulated motor torque

match.
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Iyy Mq̇ Mq2 kdτ kpτ
Old parameters 0.124 kgm2 -1.19 Nms2 0.673 Nms2 2 Nms 1 Nm
New parameters 0.150 kgm2 -1.25 Nms2 0.800 Nms2 5 Nms 5 Nm

Table 2–3: Old and new parameters used in the dynamics model

Figure 2–15: Experimental and simulated pitch rate for 3 different pitch trajectories with modified
parameters.

We can see that the match is substantially better, particularly in terms of the

paddle oscillations. As was mentioned previously, it is difficult to obtain a perfect

match since there are uncertainties and disturbances that cannot be accounted for

in the simulation. Moreover, the moment arm of the paddles is longer for pitch than

for the other degrees of freedom, so that small errors in paddle thrust will yield

larger errors in pitch than in roll. Based on Figure 2–15, we can conclude that our

dynamics model is reasonably accurate in the pitch motion and therefore, the new

parameters will be retained.
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Figure 2–16: Experimental and simulated pitch angle for 3 different pitch trajectories with modified
parameters.

Yaw Validation

The objective is now to compare simulation and experimental results in yaw

maneuvers to evaluate the accuracy of the simulation in this degree of freedom. A

good match depends on the accuracy of the paddle model, the yaw inertia and the

drag properties of the vehicle.

Unlike roll and pitch, we do not have an accurate sensor to measure the yaw

motion of the vehicle. The IMU and the compass give inaccurate measurements due

to electromagnetic interference from the electronics around them. However, we have

observed that if the vehicle remains level, we get an error of 5◦ for a turn of 360◦. As

will be shown, keeping the vehicle level is almost impossible without any user input

and therefore the results are affected.
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Figure 2–17: Yaw rate, commanded yaw input and yaw angle for the first yaw maneuver

As was done for the previous validations, we ran the simulation using the paddle

motion recorded during the experiment, so that the input is the same in both cases.

Figure 2–17 to 2–19 show the results of the yaw validation for a pure yaw

maneuver. In all cases, the roll and pitch motion was kept to a minimum but we

were unable to keep them at zero for the whole maneuver. As we can see, there is a

good match in yaw rate for all three maneuvers. The match is best in the presence of

a yaw command. With no commanded yaw, the simulation tends to have a near-zero

yaw rate while the experiment shows some yaw-rate perturbations. This yaw motion

in the experiment is likely due to water disturbances or other unmodeled features

such as asymmetric paddles.

In terms of yaw angle, the results are quite different, in part because in the

simulation, the yaw angle is obtained by integrating the yaw rate. Since the yaw

rate does not match well in the absence of a commanded yaw motion, its integration
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Figure 2–18: Yaw rate, commanded yaw input and yaw angle for the second yaw maneuver

Figure 2–19: Yaw rate, commanded yaw input and yaw angle for the third yaw maneuver
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creates a growing error. For example, in Figure 2–18 and 2–19, we can see that

the yaw angle has the same shape, but that due to a difference in yaw rate, there

is a growing gap in yaw angle. This difference is particularly visible in Figure 2–

18 between t = 5s and t = 10s and in Figure 2–19 between t = 7.5s and t = 30s.

Given our inability to model all possible disturbances and other circumstances we are

satisfied with these results and we can conclude that the dynamics model is accurate

in yaw.

2.5 Reverse Model

Vehicle controllers typically output required forces and moments that must be

applied to the vehicle in order to follow a prescribed trajectory. However, the only

variables that can be changed on Aqua are the amplitude, period and offset of paddle

oscillation. Generally, the amplitude and period of oscillation determine the output

thrust, while the offset angle determines the direction in which the thrust is produced.

A mapping is therefore needed to determine the paddle motion that should be used

to accomplish the forces and moments specified by the controller. This mapping will

be used in the simulation as well as on the real robot.

2.5.1 Force Distribution

The controller, the design of which will be discussed in Section 3, outputs the

desired forces and moments in the six degrees of freedom. These are assembled in

the vector f. In order to determine the paddle motion, we first need to know what

forces each paddle must produce. On the Aqua robot, each of the six paddles can

generate a force in the x and z -direction. Since f has six components and there
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are twelve component paddle forces, this problem admits many solutions. Quadratic

programming [76] is used to formulate this problem as a minimization problem:

min
fp

fTp Hfp

2

subject to Afp = f

fp = [fx1 · · · fx6 fz1 · · · fz6]T

(2.25)

where H in this case is an identity weighting matrix, and A is a 6×12 matrix relating

fp to f. The vector of paddle forces, fp, consists of fxi and fzi which are the force

required by the i’th paddle in the x and z direction, respectively. It is important to

note that, with the present paddle configuration, it is impossible to generate paddle

forces in the y-direction. In order to accommodate the generation of lateral forces,

a desired y-force is transformed into a yaw moment command. By doing this, the

vehicle will change its heading so that the nose of the vehicle points toward the

direction of the y-force. In mathematical terms, this means that the force f in (2.25)

can be written as:

f = [ Fx 0 Fz Mx My Mz + kFy ]T (2.26)

where Fx, Fy, Fz, Mx, My, and Mz are the desired forces and moments calculated

by the controller and k is a length weighting factor that allows the user to choose a

balance between the vehicle’s response to lateral force commands and yaw moment

commands. For the Aqua vehicle, k = 1 m was found to give a good balance of

performance.
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Figure 2–20: Paddle force and offset angle

2.5.2 Offset Angle

Once fxi and fzi are known for each paddle, we can proceed to determine the

necessary paddle motion. From Figure 2–20, the required thrust (T ) produced by

the paddle and its offset angle (λi) are easily deduced:

Ti =
√
f 2
xi + f 2

zi λi = tan−1(fx
fz

) (2.27)

The force T acts along the thrust line that was described in Section 2.2 and

λi is the angle between the negative z -axis of RV and the thrust line. The thrust

line can be understood as the direction in which a net thrust is produced and it is

coincident with the line about which the paddle oscillates.
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2.5.3 Paddle Motion

The paddle thrust T must now be transformed into an amplitude and period

of oscillation using the relation described by (2.22). However, before doing this,

we must modify (2.22) to account for the fact that the inflow is affected by the

vehicle motion. We assume that the flow velocity at paddle i, vi, is composed of

two components: the velocity of the paddle at the centre of pressure and the inflow

caused by the moving paddle. A key assumption here is that the flow velocity is the

sum of these two components. This velocity vi replaces vin that was used in (2.21).

Therefore, we need to find the component of the velocity along the thrust line. We

use equation (2.20) to express the inflow velocity caused by the paddle as a function

of the period of oscillation:

vi = −Ui • [ sin(λ) 0 cos(λ) ] + vin

= −Ui •
[
[ sin(λ) 0 cos(λ) ]

]
+ 4l

3Pi

(
w1+2w2

w1+w2

)
= u+ 4l

3Pi

(
w1+2w2

w1+w2

) (2.28)

where Ui is the velocity of paddle i at the hip. The velocity of the paddle includes the

effect of the translational and rotational motion of the vehicle, as well as the motion

of the paddle relative to the vehicle. The dot product operation in the first term of

(2.28) retains only the component of the paddle velocity that is parallel to the thrust

line. Combining (2.19), (2.21) and (2.28) together, we can obtain an expression for

the forward thrust T that depends only on the velocity, amplitude and period of

oscillation:
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T = 0.0654ρl2 (w1 + w2)
Ai
Pi
− 0.049ρl (w1 + w2)Aiu− 0.1554 (2.29)

From (2.29), we can see that many combinations of A and P will provide the

desired force. We formulate this problem as a minimization in which we try to remain

near desirable values of A and P :

min
A,P

{
z = WA(A− A0)2 +WP (P − P0)2

}
(2.30)

where WA and WP are the weights placed on amplitude and period respectively and

A0 and P0 are desirable values of the paddle oscillation amplitude and period. For

the present work, the values A0=0.4rad and P0=0.5s were selected because they

were found to provide good vehicle performance (speed, efficiency, maneuverability)

in our experiments. This period and amplitude of oscillation are routinely used when

operating the vehicle manually. Solving equation (2.30) with (2.29) as constraint, we

are left with a system of two equations in two unknowns, A and P :

490WA(A− A0)(F+0.1554
A

) (w1+2w2)

(4l(w1+2w2)−3uP (w1+w2))2 + 2WP (P − P0) = 0

A− 81.5 F+0.1554
(w1+w2)A

(w1+2w2)
4l(w1+2w2)−3uP (w1+w2)

= 0
(2.31)

Equation (2.31) is solved as a set of two equations and two unknowns using the

MATLAB/MAPLE function solve.m which solves the system of equations in closed

form for polynomial of order 4 or less, which is the case here. If u is not 0, we

typically obtain four solutions. We select the most appropriate solution by selecting
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the one in which A and P are purely real and positive. In all the tests we have

performed, these two criteria were sufficient to obtain a single solution. Two of the

four solutions are complex conjugates, one has a negative A and/or P and the last

one is the valid solution. In the case where no valid solution can be found, the

function would output A0 and P0.

2.6 Linearization

The dynamics model described in Sections 2.1 and 2.2 is nonlinear. It is con-

venient for a computer simulation but for some controller design, a linear model is

necessary. In this work, an adaptive controller (Section 3.4) and a Floquet controller

(3.5) requires a linear model.

The general nonlinear model of a general moving system can be written as:

ẋ = F(x,f) (2.32)

where f is the net propulsive force coming from the paddles and x is the state vector

as defined by (2.1) and (2.2). f is a force oscillating with a frequency twice the

frequency of oscillation of the paddle. The nonlinear model was described in Section

2.1 and includes the inertial force, the hydrodynamic drag, the Coriolis forces, gravity

and buoyancy. The linear model would then take the following form:

ẋ = Ax + Bf (2.33)

where A is 12 by 12 matrix and B is 12 by 6 matrix. A is defined as:
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A =
∂F

∂x
=



∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂x12

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂x12

...
...

. . .
...

∂F12

∂x1

∂F12

∂x2
· · · ∂F12

∂x12


(2.34)

There are several methods that can be used to linearize a nonlinear time-

invariant system. A direct and common ways to obtain a linear model is numerical

differentiation by finite difference, which requires that the system start at an equilib-

rium point. The system is then disturbed from that equilibrium by perturbing one of

the state variables. The resulting response is obtained and from these, we calculate:

Aij =
∆ẋi
∆xj

(2.35)

where ∆ẋi is the rate of change of the i’th state for a given change ∆xj of the j’th

state. Because Aqua has oscillating thrust as shown in Figure 2–21, it will never

reach an equilibrium point and will instead oscillate around a steady-state value.

With thrust as in Figure 2–21, the method used for nonlinear time-invariant

system described above cannot be used, and a new method was designed to account

for the unsteady equilibrium. Several issues arise when trying to determine an ad-

equate method. First, the depending on the position of the paddle, the response to

a disturbance will be different. It is therefore important to disturb the system over

a full period of oscillation to get every possible paddle configuration. Second, the

disturbance must be large enough to be distinguished from the steady-state. Finally,
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Figure 2–21: Thrust acting on centre of gravity of the robot

the dynamics of the robot changes drastically with velocity and a single operating

point will not model the robot accurately.

A disturbance was applied at regular interval over one period of oscillation as

can be seen in Figure 2–22. For the specific case shown in Figure 2–22, the nom-

inal steady-state condition is u = 0.16m/s with all other velocities equal to 0. A

disturbance of 0.016m/s (10% of the nominal speed) is applied to u, 20 times over

the paddle cycle. This value was chosen to be large enough to elicit a response, and

small enough that Aqua would return to its nominal speed between each excitation.

The response of the system in the six degrees of freedom, for the disturbance shown

in Figure 2–22, is shown in Figure 2–23. This corresponds to the first column of the

state matrix A. We can see that for a disturbance in u as shown in Figure 2–22, there

is a response in surge, heave and pitch motion but not in the other three degrees of
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Figure 2–22: Disturbance in the surge velocity

Figure 2–23: Response to a disturbance of 0.016 m/s in u
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Figure 2–24: (a) Average value of Figure 2–23 (b) RMS over average value of Figure 2–23

freedom as shown in Figure 2–23. The average entries of matrix A can be computed

from the average response to a disturbance:

Āij =
average(∆ẋi)

∆xj
(2.36)

This average given by (2.36) is only one part of the total value of Aij. This

total value of Aij is composed of two parts: one constant and one oscillating, Aij =

Āij + Àij. These two parts are clear from Figure 2–23. The RMS value of the

matrix entries was calculated to evaluate the periodic variation of the dynamics of

the robot. Figure 2–24 shows the average value and RMS value of the first column of

state-matrix A for the disturbance shown in Figure 2–23. We found that the diagonal

elements had the largest average values of all entries. Moreover, the constant part

is more important than its RMS counterpart except in the case where the average is

close to 0, such as A3,1 shown in Figure 2–23 and Figure 2–24.
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CHAPTER 3

Controllers
The objective of the controllers described in this chapter is to provide trajectory

tracking capabilities for the underwater vehicle Aqua. As was mentioned in Section

1.2, many researchers have studied the control of underwater vehicles. Many of

them have studied different traditional techniques to control conventional underwater

vehicle [35, 36]. Others have tried more advanced methods such as model-based

control or robust control [37–39]. Recently, more work has been done on the control

of biomimetic underwater vehicle [51–53, 77]. These control techniques worked well

on conventional vehicles and we will investigate their performance on a biomimetic

vehicle. Moreover, we will apply a control technique known as Floquet that pertains

only to time-periodic vehicle, which has not been attempted previously.

The controllers discussed here will output the force vector f that appeared in the

vehicle equation of motion (2.6). This force will have to be generated by the paddles

and the mapping from force to paddle motion is done using the method discussed

in Section 2.5. Several types of controllers with different properties/features were

developed: PID, model-based, adaptive and Floquet. PID controllers are simpler

and do not require any knowledge of the system as their output depends only on the
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desired and actual state of the system. This controller is discussed in Section 3.2.

The model-based controllers that will be discussed in Section 3.3 use the dynamics

model developed in Section 2.1 to improve the performance of the PID. Two types of

model-based controllers are designed: linearizing and nonlinear. Adaptive controllers

are similar to model-based controllers in the sense that they use a model of the system

to produce the control input. However, the model is adjusted in real time to account

for uncertainties. This controller will be covered in Section 3.4. Finally, the Floquet

controller is different from the others because it is the only one that deals explicitely

with the time-periodic nature of the vehicle. Section 3.5 discusses the design of a

controller using Floquet theory.

The work done in this chapter will be implemented in the dynamics simulation

and on the actual vehicle to assess the performance of the different controllers. The

process that was used to develop the model-based, Floquet and adaptive controllers

could be used for other vehicles if a dynamics model is known. However, the Flo-

quet method can only be applied to time-periodic systems, though most biomimetic

vehicles fit this classification.

3.1 Controller input

In this section, we describe the input signals that are sent to the controller, the

desired and actual trajectory:

vd =

[
ud vd wd pd qd rd

]
(3.1)
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sd =

[
xd yd zd φd θd ψd

]
(3.2)

v =

[
u v w p q r

]
(3.3)

s =

[
x y z φ θ ψ

]
(3.4)

where sd is the desired position of the vehicle, vd is the desired velocity of the vehicle,

v is the actual velocity and s is the actual position of the vehicle. The actual velocity

and position represent the state of the vehicle and are assumed to be provided by

sensors on the robot. For the time being, it is assumed that all the entries in (3.3)

and (3.4) are precisely sensed; though this assumption will be revisited later. The

desired velocity and position are defined by the user and represent the target to

track. Each entry of these four vectors represent one degree of freedom.

3.2 PID Controller

We began the controller design with a PID control law because of its simple

and well understood nature. A PID controller does not require any knowledge of the

system dynamics and its control signal depends only on the error signals. Moreover,

it is easy to implement on the actual vehicle and it is a good basis of comparison

with more complex controllers. The simple PID controller takes the form:

f = Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt (3.5)
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ev = vd − v (3.6)

es = sd − s (3.7)

where Kd, KI and Kp are 6-by-6 diagonal matrices with positive entries, ev is the

velocity error vector, es is the error in position and J−1
1 (n2) is the transformation

matrix from the inertial frame to the body frame. Each non-zero entry of a gain

matrix K will affect only one degree of freedom. The equation of motion of the

robot is obtained by substituting (3.5) into (2.6), yielding:

Mv̇ + C(v)v + D(v)v + g(n2) + b(n2)

−Kdev − J−1
1 (n2)Kpes − J−1

1 (n2)KI

∫
esdt = 0 (3.8)

The PID controller can be separated into two sub-cases: with an integral gain

and without. Without any integral gain, we can see from (3.8) that unless vd is a zero

vector, the controller will not achieve perfect trajectory tracking for which both ev

and es are 0. Equation (3.5) shows that, if ev = 0 and es = 0, the controller would

not send any force command and the robot would slow down due to dissipation,

causing ev to change. With an integral gain, we can expect the controller to provide

better trajectory tracking capabilities.
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3.3 Model-based controllers

3.3.1 Model-based linearizing controller(MBL)

This controller is more complex than the PID controller and requires a knowledge

of the system dynamics, which was discussed in the modeling section of this thesis.

The intent of this linearizing controller is to cancel all nonlinear terms of the equation

(2.6) of motion by including them in the controller equation. Using this method, we

obtain a linear system in which the degrees of freedom are decoupled. The controller

takes the form:

f = Mv̇d + C(v)v + D(v)v + g(n2) + b(n2)

+Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt (3.9)

The first five terms of (3.9) are called the model-based terms. They cancel the

Coriolis, Hydrodynamic, gravity and buoyancy force of the equation of motion. The

PID terms are added to account for uncertainties in the model and to improve the

response. In (3.9), it is presumed that the dynamics model is precisely known, so

that the quantities M, D(v), C(v), g and b are precise representations of the true

quantities. By substituting (3.9) into (2.6), we then obtain the equation of motion :

Mea + Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt = 0 (3.10)

ea = v̇d − v̇ (3.11)
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The system described in (3.10) is linear and time-invariant. It is either a fourth

or third order system depending on whether there is an integral gain or not. More-

over, since M, Kd, KP and KI are all positive diagonal matrices, the system is

completely decoupled and each degree of freedom can be treated independently.

Therefore, the dynamic system is asymptotically stable. By properly tuning the

gains, the response of (3.10) can be set as desired. Moreover, we can see that there is

an equilibrium point at (ev, es) = (0,0). However, since the controller force defined

by (3.9) will never be achieved exactly because of the oscillating paddles, perfect

cancellation of the terms, as shown by (3.10) will never be possible at every instant

and will only be possible on average. Therefore, (3.10) will not be truely decoupled

in practice. Also, in practice, model uncertainties would also contribute to imperfect

coupling.

3.3.2 Model-based nonlinear controller(MBNL)

The purpose of the nonlinear controller is to provide the ideal force that would

be required to achieve trajectory tracking. This controller is similar to the MBL

controller except that the MBNL uses the desired trajectory while the MBL uses the

actual trajectory to calculate the control force. We expect this controller to provide

a better performance since its control force is precisely that needed to track the

trajectory. To account for the uncertainties in the model, proportional, integral and

derivative gains are also added. The nonlinear controller takes the following form:
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f = Mv̇d + C(vd)vd + D(vd)vd + g(n2) + b(n2)

+Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt (3.12)

We can see in (3.12) that the first five terms represent the ideal force to achieve

trajectory tracking. In the MBL discussed in Section 3.3.1, the first five terms

represented the forces to cancel the nonlinear terms in the equation of motion of

the vehicle. Substituting (3.12) into (2.6), the equation of the dynamical system

becomes:

Mea + (C(vd)−C(v)v) + (D(vd)−D(v)v)

+Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt (3.13)

This system is highly nonlinear and coupled. However, we can still notice the

same equilibrium point as for the linearizing controller: (ev, es) = (0,0). We also

notice from (3.12) that, as the actual velocity reaches the desired velocity, (3.13) will

reduce to (3.10).

3.4 Adaptive controller

Adaptive controllers are types of controllers in which the control law is adjusted

to account for the fact that the system parameters might change with time or be

poorly known. The design of auto-pilots for high performance aircraft was the main

motivation for research on adaptive control because aircraft operates over a wide
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Figure 3–1: Controller structure for adaptive control

range of altitude, weight and speed [78]. Figure 3–1 show the general block diagram

used in the implementation of adaptive controllers. The usual feedback structure is

present with the addition of an updating mechanism that adapts the controller based

on the current state and input.

It is important to note that an adaptive controller is different from a robust

controller. A robust controller guarantees that, if the uncertainties remain within

given bounds, the control law does not need to be modified to satisfy the perfor-

mance requirements. In adaptive control, the control law is modified to account for

the uncertainties. There exist several approaches to adaptive control such as gain

scheduling, adaptive pole placement and model reference adaptive control (MRAC)

but we will concentrate on only one approach: model identification adaptive control

(MIAC). We decided to apply this method because the adaptive law will output an

approximation of the system matrices A and B which could be compared to those

obtained in the linearization. As a result, the MIAC will provide tracking capabilities

as well as information about the dynamics of the system.

3.4.1 MIAC Theory

The objective of MIAC is to estimate the unknown state-space matrices A(t)

and B(t) and to adjust the control law accordingly. Therefore, the form of the
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Figure 3–2: controller structure for MIAC

controller will be similar to that for the MBNL controller (Section 3.3.2). However,

in the case of the MIAC, the model-based part of the controller will be updated in

real time. Moreover, a linear representation of the system dynamics will be used

within the controller, rather than a nonlinear one. The general structure of the

MIAC controller is shown in Figure 3–2. The adaptive mechanism is determined by

the block ”system identification” that takes the state of the system and the controller

output as inputs. The plant parameters are updated in the identification process.

Then, using these parameters, the control law is adjusted.

The rest of this section will now describe the plant model that was used and the

process to obtain the system identification and adjustment mechanism. The dynam-

ics of the plant or system is assumed to be governed by a set of linear differential

equations:

ẋ(t) = A(t)x(t) + B(t)u(t) (3.14)

where A(t), B(t) are the state-space matrices, x(t) is the state vector and u(t) is

the input vector. We assume that A(t) and B(t) are unknown or uncertain and that

x(t) and u(t) are accurately measured. Furthermore, at all times, the eigenvalues
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of matrix A(t) must be to the left of the imaginary axis for this theory to hold (i.e.

matrix A(t) needs to be stable). The objective of the system identification process

is to generate state-space matrices as close as possible to A(t) and B(t). In order to

do this, a parallel model is formed:

˙̂x = Â(t)x̂(t) + B̂(t)u(t) (3.15)

where Â(t), B̂(t) are estimates of matrices A(t), B(t) and x̂(t) is the estimate of

vector x(t). The input vector u(t) is the same for both systems and comes from the

controller. Then, the estimation error is defined as:

ε = x(t)− x̂(t) (3.16)

The objective is now to find an adaptive law so that Â(t) and B̂(t) converge

toward A(t) and B(t). First, we find the rate of change of the estimation error by

subtracting (3.15) from (3.14):

ε̇ = Aε− Ãx̂− B̃u (3.17)

where Ã = Â−A and B̃ = B̂−B. Note that (3.17) has an equilibrium point(i.e. ε̇ =

0) when all estimated matrices and vector match their exact counterpart. Therefore,

the objective of our adaptive law is to get:
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˙̃A =
˙̂
A = 0

˙̃B =
˙̂
B = 0

ε̇ = 0 (3.18)

To meet our objective stated in (3.18), we assume that ˙̃A and ˙̃B have the

following structure:

˙̂
A = F1(ε,x, x̂,u)

˙̂
B = F2(ε,x, x̂,u) (3.19)

where F1 and F2 are functions of known signals and they will be chosen so that

(3.18) is satisfied. Note that this assumption simply states that ˙̃A and ˙̃B depend

on all signals of the system. We will now use a Lyapunov technique to determine

appropriate functions F1 and F2. The objective is to find a Lyapunov function that

would estimate the energy of the system. Then, by proving that the energy decreases

with time, we prove that the system errors will converge to zero [62]. Ioannou et

al. [78] suggested a Lyapunov function candidate to solve this problem:

V (ε, Ã, B̃) = εTPε + tr

(
Ã
T
PÃ

Γ1

)
+ tr

(
B̃
T
PB̃

Γ2

)
(3.20)

where V is the Lyapunov function, Γ1, Γ2 are positive constants diagonal ma-

trices and P = PT is chosen to satisfy the following Lyapunov equation:
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PA + ATP = −I (3.21)

It is important to note that the existence of P is guaranteed by the stability of

A. According to Lyapunov stability theory, the system will be stable if the rate of

change of the Lyapunov function candidate (3.20) is always negative. This function

being an evaluation of the energy of the system, this stability criterion simply implies

that the energy of the system will decrease with time. The time derivative of (3.20)

is given by:

V̇ = ε̇TPε + εTPε̇ + tr

(
˙̃APÃ

Γ1

+
ÃP ˙̃A

Γ1

)
+ tr

(
˙̃BPB̃

Γ2

+
B̃P ˙̃B

Γ2

)
(3.22)

This equation can be rearranged by replacing ε̇, ˙̃A, ˙̃B in (3.22) with the expres-

sions given by (3.17) and (3.19):

V̇ = εT
(
PA + ATP

)
ε− 2εTPÃx̂− 2εTPB̃u + tr

(
2
Ã
T
PF1

Γ1

+ 2
B̃
T
PF2

Γ2

)
(3.23)

Then, using the result in (3.21) and using some matrix properties discussed

in [62,78], we can reduce (3.23) to:

V̇ = −εTε + 2tr

(
Ã
T
PF1

Γ1

+
B̃
T
PF2

Γ2

− Ã
T
Pεx̂T − B̃

T
PεuT

)
(3.24)
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Our objective is now to find functions F1 and F2 that will guarantee that (3.24)

is negative. Although there are many possibilites, one simple solution that makes

the second term of (3.24) vanish is:

F1 =
˙̂
A = Γ1εx̂

T and F2 =
˙̂
B = Γ2εu

T (3.25)

In (3.25), ε, x̂ and u are all measured quantities. Therefore, only Γ1 and Γ2,

the adaptive gain matrices, can be adjusted to improve the convergence of F1 and

F2. Eq. (3.25) constitutes the adaptive control law used to update the estimated

state matrices Â and B̂ so that they converge to their exact values. The ”system

identification” process in Figure 3–2 thus consists of integrating eq. (3.15) to find

x̂; finding ε using (3.16); and finding
˙̂
A and

˙̂
B from (3.25); and integrating these to

find Â and B̂.

3.5 Floquet Controller

Floquet theory is a branch of the theory of ordinary differential equation that

allows the solution of time-periodic problems. It is named after Gaston Floquet, a

French mathematician, and its main result is a coordinate change that transforms

a time-periodic system into a linear time-invariant system. It can also be used to

design controllers for time-periodic systems. Aqua uses oscillating paddles instead of

thrusters to propel itself through water. Due to this particular propulsion method,

the thrust is periodic with a pre-determined constant period. In the reverse model

presented in Section 2.5, the period is allowed to vary. We typically select the

weights in (2.30) to keep the period constant. However, if it is necessary to modify
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Figure 3–3: Side view of the vehicle with different paddle configurations. a-b

the period to produce more thrust, we can design multiple Floquet controllers with

different period and gain scheduled. This was not necessary in this work. Moreover,

as it can be seen in Figure 3–3 the hydrodynamic profile of the vehicle changes as

the paddles move, which changes the response of the vehicle to control inputs and

disturbances. In Figure 3–3a, if the vehicle is moving horizontally the paddles are all

aligned with the vehicle motion and therefore result in very low drag. On the other

hand, on Figure 3–3b, the paddles are oblique to the flow and generate more drag.

This variation in paddle orientation is periodic in nature due to the periodic paddle

motion.

As a result of the periodic nature of the system, Floquet-Lyapunov theory seems

a good candidate for the development of controllers for the Aqua vehicle. A linear

model for the vehicle can be represented as follows:

ẋ(t) = A(t)x(t) + Bu(t)

y(t) = C(t)x(t)
(3.26)

where A(t), B(t) and C(t) are the time-periodic state-space time-periodic linear ma-

trices with period P, x(t) is the state vector and u(t) is the input vector. The linear

model presented in (3.26) is valid for all systems and not specific to our vehicle.

Aqua dynamics are nonlinear and must be linearized in order to use Floquet theory.

It is important to note that matrix A depends on time and on velocity. During the
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linearization process discussed in Section 2.6, the vehicle was linearized for different

velocities. As a result, matrix A(t) presented in (3.26) is exact only for the partic-

ular velocity used in the linearization process. In the case where the velocity of the

vehicle was to change significantly during the operation, gain scheduling should be

used. The solution to the homogenous equation, with no input u(t) is given by:

x(t) = Φ(t, t0)x(t0) (3.27)

where Φ(t, t0) is the state-transition matrix and must satisfy the following differential

equation:

dΦ(t, t0)

dt
= A(t)Φ(t, t0) (3.28)

The results presented in (3.26)-(3.28) are analogous to those of conventional

linear theory, with the exception that A(t), B(t) and Φ(t, t0) are periodic instead of

constant. The main result of Floquet theory is that the state-transition matrix can

be factored into two matrices F and J:

Φ(t, t0) = F(t)eJtF−1(t0) (3.29)

where J is a constant matrix and F(t) a time-varying matrix. These two matrices are

often called the Floquet factors. There are several methods to obtain the matrices

F(t) and J and it is important to note that there are many possible solutions to

this problem. However, the eigenvalues of J, called the Poincaré exponents (ωi), are

unique. They give information about the stability of the system as the eigenvalues of
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the state matrix A would do for a time-invariant system. Solving a Floquet problem

for all time requires determining the constant matrix J and the time-periodic matrix

F(t) for one full period. We now discuss two methods for obtaining the Floquet

factors.

3.5.1 Floquet factors using the Eigenvalues and Eigenvectors

This section describes a technique to compute the Floquet factors from the

state-transition matrix found in Section 3.5.2. It is derived from direct observation

of (3.29) and its similarity to an eigenvalue problem. In the current form of the

equation, there are two unknowns (J and F(t)) and it is therefore impossible to solve

the eigenvalue problem. We evaluate (3.29) after one period in order to circumvent

this problem. If we assume that F(t) is periodic with period P then F(P + t0) =

F(t0), and evaluation of (3.29) at t=P gives us:

Φ(P, 0) = F(0)eJPF−1(0) (3.30)

where Φ(P, 0) , the state-transition matrix after one full period, is called the mon-

odromy matrix. Because the system is time-periodic we have replaced t0 by 0 in

(3.30) without loss of generality. The monodromy matrix is obtained using the re-

sults shown in the previous section, Section 3.5.2.

From (3.30), we can see that F(0) is the eigenvector matrix of the monodromy

matrix. Moreover, J will be diagonal with the Poincaré exponents as its entries:
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J =


ω1 0 0

0
. . . 0

0 0 ωn

 (3.31)

where each ωi represents one Poincaré exponent of the system. They are the time-

periodic equivalents of the eigenvalues for time-invariant system. The Poincaré ex-

ponents are related to the eigenvalues of the monodromy matrix in the following

way:

ωi =
ln(Θi)

P
(3.32)

where Θi represents the i -th eigenvalues of the monodromy matrix. Since F(t) is

time-periodic and therefore bounded, the stability of the system depends solely on

the Poincaré exponents and those are now known from (3.32). At this stage, we

have all the knowledge to assess the stability of the system, but not enough to design

controllers. As it will be shown in a later section (Section 3.5.3), we now need to

compute matrix F(t) for all time in order to design controllers. With the matrix J

known, F(t) can be obtained for all time by rearranging (3.29):

F(t) = Φ(t, 0)F(0)e−JP (3.33)

It is important to note that there is no guarantee that the Floquet factors will

be real using this method. Real Floquet factors are desirable because the control

gain matrix is a function of the Floquet factors. An appropriate rearrangement exists

that makes both matrices real and leaves the previous formula unaltered [58]. The
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result is that the Floquet factors are real and eq. (3.29)-(3.30) still hold. For every

complex conjugate pair ωi1,2 = a± bi, a transformation is applied:

J =

 ωi1 0

0 ωi2

 =

 a+ bi 0

0 a− bi

 =

 a b

−b a

 (3.34)

With the transformation shown in (3.34) applied to every complex conjugate

pair, matrix J becomes real. However, it is not diagonal anymore, but at will be

discussed later, this does not affect the final result.

3.5.2 Computation of state-transition matrix

The state-transition matrix is used to obtain the general solution of a linear

dynamics system governed by eq. (3.26). The state-transition matrix allows calcu-

lation of the state of the system at time t from the state at time t0 as shown by

(3.27). In our case, the state-transition matrix is used to obtain the Floquet factors

in Section 3.5.1. There are several methods that have been developed to find an

analytical solution to a problem of the form presented in (3.26). In the case of a

constant matrix A, the state-transition matrix is simply:

Φ(t, 0) = eAt (3.35)

Equation (3.35) does not usually apply for time-varying system but it does hold

only if the following commutativity condition is satisfied [62]:

A(t)

∫ t

0

A(σ)dσ =

∫ t

0

A(σ)dσA(t) (3.36)
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where σ is a variable of integration. When (3.36) is not satisfied, a Peano-Baker

series can be used to find the state-transition matrix of the system [62]:

Φ(t, 0) = I +

∫ t

0

A(σ1)dσ1 +

∫ t

0

A(σ1)

∫ σ1

0

A(σ2)dσ2dσ1 · · · (3.37)

It is obvious that even though (3.37) can provide an analytical solution, it will

be computationally intensive and complicated. In most cases, it is simpler to find

a numerical approximation to the state-transition matrix rather than finding an

exact solution. Many algorithms exist to do this. They usually rely on finding the

solution x(t) and deducing the state-transition matrix from it. There are two main

computational approaches to this problem: n-pass and single-pass schemes [63].

Using the n-pass approach, eq. (3.26) with u(t) = 0 is solved n times for n

initial conditions consisting of the n columns of the identity matrix. As a result,

for each pass, we compute one column of the state-transition matrix. For example,

the first column of Φ(t, 0) would be deduced from the solution x(t) for x0(t) =[
1 0 . . . 0

]T
:



x1(t)

x2(t)

...

xn(t)


=



Φ11(t) · · ·

Φ21(t) · · ·
...

. . .

Φn1(t) · · ·





1

0

...0

0


⇒



Φ11(t)

Φ21(t)

...

Φn1(t)


=



x1(t)

x2(t)

...

xn(t)


(3.38)
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Using this approach, (3.26) needs to be solved several times and this significantly

increases the computing time of the algorithm. Cai et al. developed a method

to calculate x(t) that allows finding the state-transition matrix in a single pass.

Effectively, their method solves a system of the form:

dx(t)

dt
= A0x(t) + (A(t)−A0)x(t) (3.39)

where A0 is the constant part of A(t) and (A(t)−A0) can be expressed as:

(A(t)−A0) =
∑

(Dcsin(ct) + Bccos(ct)) (3.40)

where Dc and Bc are constant coefficient matrices and c is the frequencies of the

system. In our case, the system oscillates at a single frequency (the paddle frequency)

but in other situations, there could be more than one frequency, hence the summation

sign. Then, after some manipulation, Cai et al. developed an equation to find the

vector x(t) from the previous time step:

xk+1 = Hk+1xk (3.41)

where Hk+1 is a matrix that updates the state xk into xk+1. At this point, it is

important to note that Hk+1 is in fact a state-transition matrix from one state to

the next. Also, it is important to note that (3.41) is discrete and not continuous.

Moreover, remembering the composition rule [62], we can find any state xk as a

function of the initial state. For example:
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x2 = H2x1 = H2H1x0 (3.42)

As a result, the state-transition matrix can be obtained from H at any time t :

Φ(n∆t, 0) = (3.43)

Φ(n∆t, (n− 1)∆t)Φ((n− 1)∆t, (n− 2)∆t . . .Φ(∆t, 0) =
k∏

n=1

Hk−n+1

Using this method, the state-transition matrix can be obtained using a single

pass. The monodromy matrix can then found from (3.44):

N =
T

∆t
→ Φ(T, 0) =

N∏
n=1

Hk−n+1 (3.44)

In equations (3.41) to (3.44), the discrete form was preferred to the continu-

ous form because the algorithm developped by Cai et al. uses it. By choosing a

small enough step size, the discrete state-transition matrix given by (3.44) can be

considered continuous.

3.5.3 Control law

In the previous sections, we have shown how to obtain the state-transition matrix

and the Floquet factors for a system in the form of (3.26). We now have all the tools

to design control laws for our time-periodic system. We chose to use F(t) and J

found using the first method with appropriate rearrangement to obtain real Floquet

factors because F(t) is P -periodic like A(t) and because J has the advantage of being
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in a quasi-diagonal form. We first introduce another variable that we call the modal

variable:

η(t) = F(t)−1x(t) (3.45)

As we see from (3.45), the modal variable is simply a transformation of the state

variable x(t). We can then rewrite (3.26) in term of the modal variable:

η̇(t) = Jη(t) + F(t)−1B(t)u(t) (3.46)

This means that the matrix F(t) reduces the time-periodic system of (3.26)

into a constant-coefficient system. Moreover, as was mentioned in Section 3.5.1 the

stability of the system depends only on the eigenvalues of J, the Poincaré exponents.

We will use a simple proportional feedback for our control law:

u(t) = K(t)(ηd(t)− η(t)) (3.47)

where the subscript d signifies that this is a desired value. Using this control law,

the system described by (3.46) becomes:

η̇(t) =
[
J− F−1(t)B(t)K(t)

]
η(t) + F−1(t)B(t)K(t)ηd(t) (3.48)

The first part of (3.48) is the controlled natural response of the system. The

eigenvalues of J − F−1(t)B(t)k(t) are different from those of J in (3.46) and are

determined by the gain matrix K(t). By adjusting the gain matrix, the eigenvalues

can be selected to improve the response of the system. The second part of (3.48)
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determines how the system will track a desired trajectory. Now, we can define the

controllability matrix:

G(t) = F−1(t)B(t) (3.49)

In our case, since we only have direct control over the velocity states, the con-

trollability matrix will have a maximum rank of 6. Then, the matrix of Poincaré

exponents of the controlled system is given by:

J′ = J−G(t)K(t) (3.50)

The control problem here becomes finding the appropriate gain matrix K(t) that

will place the poles at the desired location. It is also important to note that since

G(t) has a rank of 6, only 6 eigenvalues can be selected independently. Calico et

al. proposed a method to determine which eigenvalues to modify [58]. The J matrix

is partitioned into modes to control and modes to ignore: Jc and Ju. A similar

partition is done for F(t), η(t) and G(t). Then, the first part of (3.48) becomes [58]:

 η̇c(t)

η̇i(t)

 =

 Jc + Gc(t)Kc(t) Gc(t)Ki(t)

Gi(t)Kc(t) Ji + Gi(t)Ki(t)


 ηc(t)

ηi(t)

 (3.51)

By setting Ki(t) to 0, the controlled modes can be decoupled from the un-

controlled ones. Furthermore, this leaves the eigenvalues of the ignored modes un-

changed. Rewriting (3.50) for the controlled modes:
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J′c = Jc + Gc(t)Kc(t) (3.52)

where J′c is the desired eigenvalues matrix. With Gc(t) being a square matrix, we

can find the required control gains to place the poles at the desired location:

Kc(t) = G−1
c (t) [J′c − Jc] (3.53)

This is valid only if Gc(t)is of full rank. Then, the full gain matrix is given by:

K(t) =

[
Kc(t) 0

]
(3.54)

Finally, the gain matrix in the x(t) domain can be obtained by post-multiplying

(3.53) by F−1(t).
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CHAPTER 4

Results
Chapter 3 described five controllers that were developed to provide trajectory

tracking capabilities to the underwater vehicle Aqua. The form of the controllers was

presented as well as the resulting equation of motion of the vehicle. The controllers

output the forces to be provided by the paddles. A method to transform that force

into desired paddle motion was also described in Section 2.5.

This chapter describes the evaluation of these trajectory tracking controllers on

Aqua. Section 4.1 discusses how the controllers were implemented in the simulation

and on the actual vehicle. The trajectories that were tested are described in Section

4.2. The trajectories are first tested on the dynamics simulation to tune the PID

gains in Section 4.3. Finally, an experiment to test the controllers in a dynamics

environment is described in Section 4.4. With good results in these maneuvers, it

would then be possible to test the performance of the vehicle in high performance

maneuvers.

4.1 Implementation

This section describes how the controllers were implemented in the dynamics

simulation and on the actual vehicle. The process was different in the simulation
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Figure 4–1: Control loop used in the simulation

and in the experiment because we do not have access to the same sensor information

and the programming language is different in the two environments. We also discuss

how the adaptive and Floquet theory was applied to the vehicle.

4.1.1 Implementation in the Simulation

The simulation uses the MATLAB programming language. As a result, the con-

troller was defined as a callable function where the input was defined as in Section

3.1. The five controllers were programmed within that function and the user could

select which controller to use. Figure 4–1 shows the control loop used in the simula-

tion. The controller takes the state of the vehicle as input and outputs a force. Then,

the reverse mapping developed in Section 2.5 is used to determine the appropriate

paddle motion (A,P,λ).

4.1.2 Implementation on the vehicle

The vehicle is controlled via a standard laptop with a Linux operating system.

The user controls the vehicle with a gamepad that has 2 joysticks. The left joystick

controls the pitch and roll motion while the right one controls the yaw motion. There

is a graphical user interface(GUI) on the laptop where the user can see the joystick
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Figure 4–2: Experimental setup

commands as well as the Euler angles. The GUI also gives information about the

energy consumption of the vehicle or any failure occuring. The video from the camera

at the front of the vehicle is displayed on a separate monitor. On the GUI, the user

also has the option to choose which swimming gait to use and to turn on/off the

controller. The setup used during a shore experiment is shown in Figure 4–2. It is

similar to the one used during boat experiments.

The vehicle control software uses the QNix programming language. The con-

troller was programmed as an object that was called from the GUI. The input of the

controller object is the sampling rate, the Euler angles, Euler rates and the depth of

the vehicle. For this experiment, the desired trajectory was defined within the con-

troller itself. In the future, the desired trajectory will be an external input. The user

could decide which controller to use directly from the GUI. The reference trajectory
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was also selectable using an option on the GUI. The controllers were programmed us-

ing the expressions discussed in Section 3. The only difference was for the controllers

that rely on states that were not available for measurement on the vehicle. This was

the case for the MBL and MBNL. In these two cases, the unavailable states were the

surge, sway and heave velocity. They were replaced by their estimated value for the

maneuver based on the amplitude and period of oscillation:

[
u v w

]
m

s
=

[
0.5 0 0

]
m

s
(4.1)

It is important to note that, except for the control gains that can be changed

online, all other changes in the controllers require recompiling the code. Due to the

low speed CPU onboard the vehicle, recompiling is time consuming and cannot be

done during an experimental session. Making changes in the code is only possible

between sessions.

4.1.3 MIAC: Application

In this section, we describe how the MIAC approach was applied to Aqua. This

includes how we initialize matrices Â and B̂, the controller form, the stabilization

of the system and the tuning of the adaptive gain matrices Γ1 and Γ2.

The initial values for the system matrices Â and B̂, denoted as Â0 and B̂0, are

obtained from the linearized model. This initial guess is used as the starting point for

the adaptive law. It is important to note that since the system is highly nonlinear,

it cannot be modeled perfectly using the linear differential equation given by (3.14).

However, using the adaptive law described in (3.25), Â and B̂ will be adjusted in

real time to account for nonlinearities.
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As was mentioned in Section 3.4.1, the linear system must be stable for the

theory to hold. However, even though the nonlinear model is stable, the linear model

is unstable in yaw and a stabilizing controller us = Ksx needs to be added. This

controller acts as a stability augmentation system(SAS) and the adaptive controller

is based on the resulting augmented system. The augmented state matrix takes this

form:

A′ = (A + BKs) (4.2)

where Ks is a stabilizing control gain matrix. The yaw rate is the only unstable

degree of freedom and therefore, we chose to add a gain only for the yaw rate (the

(6,6) element of Ks. This way, all other degrees of freedom are left unaltered and the

effect of the adaptive law will be more apparent. Note that this stabilizing controller

is applied to the nonlinear model.

Next, the adaptive gain matrices Γ1 and Γ2 must be determined in order to solve

(3.25). Instead of using a trial and error procedure that could be time consuming,

we chose to use an offline optimization algorithm. The simulation was run using a

predetermined sinusoidal input vector u. We constructed the input vector so that

it had components in all 6 degrees of freedom so that all states of the vehicle were

excited. Then, the objective of the optimizer was to find matrices Γ1 and Γ2 so

that the norm of the error vector ε converged to 0 as quickly as possible with a

maximum overshoot of 5%. This structure is shown in Figure 4–3. The input u is

fed to both the linear model(considered perfect for this optimization, eq.(3.14), but

with the state matrix of eq. (4.2) and to the uncertain model eq. (3.15). Then,
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Figure 4–3: Block diagram of the adaptive gain optimization

the error vector ε was sent to the optimizer which then adjusted the adaptive gains

accordingly.

A gradient based method was used to solve the problem using the fminunc func-

tion available in MATLAB. The dynamics simulation was set as a callable function

with the adaptive gain matrices as input, and fminunc then outputs the optimal Γ1

and Γ2. Figure 4–4 shows how the (4,4) entry of matrix Â changed with time in

our simulation for different values of the roll adaptive gain. This entry of Â is the

main one pertaining to the roll rate. We see that for a small Γroll, it takes a long

time to settle and when the gain is too large, the overshoot becomes more significant.

The optimization found that the optimal gain was Γroll = 262. We also note that

it takes around 2 seconds to settle. It is also important to note that this process

is done offline and that the adaptive gain matrices will remain constant during the

simulation and experiments.

We will now describe the control law used, which is similar to that used in the

model-based controller discussed in [79,80]. Matrices Â and B̂ were partitioned into

upper and lower part. The upper part relates to the velocity states and the lower part
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Figure 4–4: Entry of A4,4 with time for different adaptive gain

the displacement states. The state vector x was also partitioned into the velocity

vector v and the position vector s.

Â =

 Â
6×6

top 0

Â
6×6

bot 0

 x =

 v6×1

s6×1

 B̂ =

 B̂
6×6

top

B̂
6×6

bot

 (4.3)

We note that the right side of Â is 0 because ẋ does not depend s and that

Âbot is the identity matrix. The partitioning was done because the objective of

the adaptive part of the controller is to cancel the Coriolis and hydrodynamic drag

forces of (2.6). By combining (2.6), (3.15) and (4.3) and rearranging the equations

we obtain a relationship between the Coriolis and hydrodynamic drag matrices and

the linear state-space matrices:

B̂
−1

topÂtop = − (C + D) (4.4)
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where C and D are the linearized forms of C(v) and D(v). Then, we can define

the control force generated by the adaptive controller:

f = −B̂
−1

topÂtopv + Kdev + J−1
1 (n2)Kpes + J−1

1 (n2)KI

∫
esdt (4.5)

We can then obtain the equation of motion of the vehicle using this controller

by substituting (4.5) into (2.6):

Mv̇ + C(v)v + D(v)v + g(n2) + b(n2)

+B̂
−1

topÂtopv−Kdev − J−1
1 (n2)Kpes − J−1

1 (n2)KI

∫
esdt = 0 (4.6)

In the ideal case, the buoyancy and gravity forces would cancel each other since

the centre of gravity is coincident with the centre of buoyancy and the model-based

part of (4.5) represented by B̂
−1

topÂtopv would cancel the Coriolis and hydrodynamics

terms. The system would be decoupled and its acceleration would depend only

on the PID terms. However, the cancelation will not be perfect because of model

uncertainties and time-periodic thrust. However, we expect that since the state

matrices Â and B̂ are updated in real time, the model uncertainties would not be

a factor and that the cancelation would be significantly better than for the non-

adaptive model-based controller of [79,80].

4.1.4 Floquet Control Laws: Application

In this section, we describe how the theory discussed in Section 3.5 was applied

to the Aqua vehicle. The state-transition matrix was obtained using the single-pass

approach developed by Cai et al. [63].
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Figure 4–5: Flowchart of the process to obtain the gain matrix using Floquet theory

The complete process to go from the nonlinear dynamics model to the gain

matrix is presented in Figure 4–5. The model is first linearized using the technique

described in Section 2.6. This technique has the advantage of giving A(t) as a sum of

a constant term and a sinusoidal term, which allows using (3.39)-(3.40) directly. The

velocity of the vehicle, states x1(t)−x6(t), was held constant in order to linearize the

system, implying that the state matrices become less accurate as we deviate from

the linearization velocity. Moreover, matrices Dc and Bc in (3.40) of Section 3.5.3

depend on the period of oscillation of the paddles, meaning that those matrices are

only valid for that particular period. We chose to use a large value for the period

weighting factor Wp in (2.30) from the reverse mapping. This had the effect of

keeping the period almost constant when transforming the desired thrust into paddle

motion. Another option would be to design several Floquet controllers and use gain

scheduling in between but that approach was not used. Then, the state-transition

matrix is computed with results from Section 3.5.2 while the Floquet factors are

obtained using the procedure detailed in Section 3.5.3. Finally, gain matrix can be

obtained from the Floquet factors to achieve a desired performance.
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The rearrangement of (3.34) was made so that both matrices were composed of

real entries. The constant J matrix is almost diagonal:

J =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.204 0 0 0 0 0

0 0 0 0 0 0 0 −1.787 0.398 0 0 0

0 0 0 0 0 0 0 −0.398 −1.787 0 0 0

0 0 0 0 0 0 0 0 0 0.344 0 0

0 0 0 0 0 0 0 0 0 0 −0.383 0

0 0 0 0 0 0 0 0 0 0 0 −6.40


(4.7)

Matrix J was initially diagonal but some of its entries were complex which is

undesirable. Equation (3.34) was used to eliminate the complex part of J but as

a result, J has some off-diagonal elements. However, this has no negative impact

on the effectiveness of this technique. The second factor, F(t), is time-varying and

periodic with the same period P. However, as we can see from (3.45) and (3.49) the

inverse of F(t) is in fact more relevant for use in the controller. Similar to A(t), it

is composed of a constant term and of a sinusoidal term:
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F−1(t) = aF + KF cos(
2π

P
t) (4.8)

where aF and KF are constant matrices of the same size as F−1(t):

aF =



4.72 0 0 0 0 0 1 0 0 0 0 0

0 −0.217 0 0 0 0.872 0 1 0 0 0 0

0 0 1.57 0 0 0 0 0 1 0 0 0

0 0 0 0.06 0 0 0 0 0 1 0 0

0 0 1.85 0 0.442 0 0 0 0 0 1 0

0 8.53 0 0 0 −0.02 0 0 0 0 0 1

4.83 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1.16 0 0 0 0 0 0 0

0 0 6.97 0 0 0 0 0 0 0 0 0

0 −5.10 0 0 0 1.63 0 0 0 0 0 0

0 4.44 0 0 0 1.42 0 0 0 0 0 0

0 0 0 −1.00 0 0 0 0 0 0 0 0



(4.9)

103



www.manaraa.com

KF =



0.68 0 −0.0949 0 0.21 0 0 0 0 0 0 0

0 0 0 0.0043 0 0.0014 0 0 0 0 0 0

−0.0027 0 −2.1785 0 0.1410 0 0 0 0 0 0 0

0 0.0015 0 0.0012 0 0 0 0 0 0 0 0

−0.0015 0 −2.5689 0 0.1684 0 0 0 0 0 0 0

0 0 0 0.003 0 0 0 0 0 0 0 0

0.0068 0 −0.0869 0 1.20 0 0 0 0 0 0 0

0.0064 0 0.0102 0 0.0042 0 0 0 0 0 0 0

0.0291 0 0.0048 0 0 0 0 0 0 0 0 0

0 0 0 0.0057 0 0.27 0 0 0 0 0 0

0 0 0 0.0092 0 0.0023 0 0 0 0 0 0

0 −0.0053 0 −0.0064 0 −0.33 0 0 0 0 0 0


(4.10)

These two matrices were obtained using a simple curve fitting procedure. F−1(t)

is known and each entry is taken individually and decomposed into its constant or

average value and its oscillating term. The first thing to notice from these matrices

is that the constant term is generally more dominant than the sinusoidal term. Eq.

(4.8) gives us F−1(t) at any time. However, it would be more convenient in practice

to have this matrix as a function of the paddle position since the periodicity of the

system comes from the oscillating paddles. Noting that the paddle angle is sinusoidal,

we can obtain an equation for cos(2π
P
t) as a function of the paddle angle (γ):

104



www.manaraa.com

cos(
2π

P
t) =

γ(t)− λ
A

(4.11)

where A is the amplitude of oscillation of the paddle and λ is the paddle offset angle.

Using (4.11) is convenient because the paddle angle is measured on the actual robot.

Then, we can finally combine (4.8) and (4.11) to obtain an expression that depends

only on paddle position γ(t):

F−1(t) = aF + KF
γ(t)− λ

A
(4.12)

With both Floquet factors known, the next step is to determine an appropriate

J′c for our system. By altering the pole locations, we can achieve different perfor-

mance. Our objective was to obtain a critically damped system and therefore the

fastest response. Table 4–1 is used to appropriately tune the eigenvalues to obtain

the desired performance. It is based on F−1(t) because it relates x(t) to η(t). Since

aF represents the average value of F−1(t), Table 4–1 is obtained from inspection of

aF . For example, in the first row of aF , the first and seventh entries have significantly

higher values than the others. This implies that η1 will mostly affect x1(t) and x7(t).

A user who would like to control x1(t) and x7(t) will place more importance on η1.

As we can see, x3(t) and x6(t) each appear three times in the bottom row of Table 4–

1, which means that their tuning is not straightforward. Moreover, as was mentioned

in the previous section, we cannot control all 12 degrees of freedom independently

because our controllability matrix G(t) is only of rank 6. However, since some states

of the modal variable depend on multiple states of the vehicle, we can actually con-

trol more than 6 states, though not independently. The most obvious choice for the
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η(t) 1 2 3 4 5 6 7 8 9 10 11 12
x(t) 1, 7 6, 8 3, 9 10 3, 5, 11 2, 12 1 5 3 2, 6 2, 6 4
Table 4–1: Relationship between the original states and of the modal variable states

controlled states are η1(t)−η6(t) since this will allow control of 11 of the 12 states of

the vehicle. The only uncontrolled state is the fourth one, the roll rate. However,the

roll motion is controlled by x10, the roll angle. Another option would be to control

η12(t) instead of η2(t). In this case, yaw rate and y-position are left uncontrolled in

order to control roll rate.

4.2 Reference trajectories

This section describes the trajectories and maneuvers that were defined to test

the controllers. The objective was to cover a wide range of motion to have a good

assessment of the performance. Some maneuvers will be used only in the simulation

because the vehicle can only sense and feed back a limited number of states as

discussed earlier in Section 1.1. The states readily available for feed back are the

Euler angles and rates. However, since the results presented in the validation section

were excellent, we are confident that good performance in the simulation would imply

good performance in the experiment. The maneuvers are defined in surge, roll and

pitch. The surge maneuvers are tested only in the simulation because sensing is

not available for feed back on the actual vehicle. We did not use maneuvers in the

sway and heave degrees of freedom because they are seldom use on the actual vehicle

and because sensing is innaccurate. The sensing in yaw is more accurate but not

reliable enough for feed back. As a result, only roll and pitch motion were tested

experimentally.
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Figure 4–6: Surge trajectories

4.2.1 Surge trajectory

The goal of the surge trajectory is to investigate how the vehicle can track a

velocity in the x-direction. Figure 4–6 shows the three trajectories that were defined

in the surge motion. The first maneuver is a step from 0.3 m/s to 0.5 m/s to

determine whether the controllers can track a constant velocity. The second one

is made of two parts: a parabolic acceleration followed by a steady velocity. The

third is a constantly varying surge velocity where the vehicle starts from rest and then

accelerates and decelerates. Mathematically, it is composed of a sine and square root

function. Taken together, these three maneuvers cover the basic range of application

for Aqua since the speed is mostly constant in all experiments.

4.2.2 Roll trajectory

The purpose of the roll trajectories is to test the performance of the controllers

in roll angle tracking. Many applications require that Aqua remains level or at a

particular roll angle to take video footage. Moreover, the roll motion is often used

in high performance maneuvers such as a bank turn. Therefore, it is crucial to have

good control in roll. We defined three maneuvers that cover the most common roll
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Figure 4–7: Roll trajectories

motions as shown in Figure 4–7. The first maneuver is composed of two ramps, one

with a positive slope and one with a negative slope. This will test whether the vehicle

can track a linearly varying roll angle. The second is a sinusoidal trajectory. The

third one is a step roll where the vehicle has to make a sharp change in roll angle.

The third maneuver will provide information about the settling time in roll.

4.2.3 Pitch trajectory

The purpose of the pitch trajectories is to test the performance of the controllers

in pitch angle tracking. The pitch angle is used to control the depth of the vehicle

and also in bank turns. Figure 4–8 shows the two maneuvers that were defined in the

pitch motion. The first maneuver consists of pitch pulses where the vehicle changes

its pitch orientation abruptly. This maneuver could be used to avoid an obstacle

for example. The second one is a sinusoidal motion. The frequency is higher than
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Figure 4–8: Pitch trajectories

for the roll trajectories in order to avoid the vehicle going too deep or going to the

surface, both of which would negatively affect the results.

4.3 Simulation Results

This section presents the simulation results in which the vehicle had to track

different trajectories. It is seperated into surge, roll and pitch subsections. The PID

control gains were tuned by trial and error so as to obtain good performance in the

simulation and are presented in Table 4–2. Note that the PID gains were tuned

for the sinusoidal trajectories in surge (Figure 4–10), roll (Figure 4–14) and pitch

(Figure 4–17). These same PID gains were used in every controller that contains a

PID element.
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x y z Roll Pitch Yaw
Kd 12 Nsm−1 12 Nsm−1 12 Nsm−1 1 (Nms)rad−1 1 (Nms)rad−1 0.35 (Nms)rad−1

Kp 12 Nm−1 12 Nm−1 12 Nm−1 4 (Nm)rad−1 6 (Nm)rad−1 0.35 (Nm)rad−1

KI 1 N(sm)−1 1 N(sm)−1 6 N(sm)−1 0.5 (Nm)(srad)−1 1 (Nm)(srad)−1 0.35 (Nm)(srad)−1

Table 4–2: PID control gains used in the simulation

4.3.1 Surge simulation results

The complete six degrees of freedom simulation was run where the vehicle had

to follow the three surge trajectories described in Section 4.2.

Figures 4–9, 4–10 and 4–11 show the simulation results for the three surge

maneuvers and Table 4–3 shows the settling time to reach a constant speed in Figure

4–9. The settling time was evaluated using the MATLAB function lsiminfo that

determines the time the vehicle takes to remain within 2% of the desired value.

The first thing to notice in these three figures is the absence of the MBL con-

troller. The MBL gave very poor results and will be treated separately later in

this section. We can see that for the step surge tracking shown in Figure 4–9, each

controller gives different results with the Floquet and adaptive controllers outper-

forming the other two. Table 4–3 clearly shows that the Floquet controller gives

the best performance in terms of settling time. Both the MBNL and Floquet have

the same initial acceleration but the MBNL overshoots the desired speed. The PID

controller is much slower than the other three but we can see that it will eventu-

ally tracks the desired speed with a small error. The adaptive controller gives good

performance except for the first 3-4 seconds during which the adaptive model is not

very accurate. Once it settles, the controller becomes accurate, as we can see from

the small settling time. More discussion about the evolution of Â will be given in

Section 4.3.5 while the initialization of Â was discussed in Section 4.1.3.
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Controller Settling time(s)

PID 15
MBNL 15

Adaptive 4.5
Floquet 1.4

Table 4–3: Settling time for the constant speed maneuver

Figure 4–9: Simulation of the first surge maneuver
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Figure 4–10 shows clearly that the Floquet and adaptive controllers outperform

the MBNL and PID controller. The tracking error with the adaptive or Floquet

controller did not exceed 0.05m/s while the error with the PID controller reached

0.2 m/s and the error with MBNL reached 0.15 m/s. As was the case for the con-

stant speed maneuver, the PID gives the worst performance. Relative to the other

controllers, the PID controller has a large error for most of the maneuver. Even

after 15 seconds, it does not seem to settle. The MBNL is quite accurate during

the acceleration phase but again overshoot once the desired speed becomes constant.

We can see that the tracking error remains close to 0 for the entire maneuver with

the adaptive controller. While the Floquet has some small tracking error during

the acceleration, the adaptive follows it accurately. This is because in the case of

a continuous acceleration, the adaptive law has time to adjust itself and provide an

accurate approximation of Â. In the case of the transition to constant speed, the

change in speed was abrupt and it takes a few seconds for the adaptive adjustment

to take place. The adaptive controller slightly overperforms the Floquet controller in

the case of an accelerating vehicle. Once the desired speed becomes constant, both

demonstrate similar performance. The MBNL is accurate during the acceleration

but does not track the constant speed very well. It is also important to note that

the other degrees of freedom remains at zero as desired.

We can see in Figure 4–11 that, in the case of a more complex maneuver, the Flo-

quet and adaptive controllers are again superior to the MBNL and PID controllers.

However, the PID controller gave better performance for this particular maneuver,

mainly because the gains were tuned specifically for this maneuver. However, even
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Figure 4–10: Simulation of the second surge maneuver

Figure 4–11: Simulation of the third surge maneuver
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Figure 4–12: Simulation of all three maneuvers using the MBL controller

with this tailor-made tuning, the PID is not as accurate as the Floquet or adaptive

controllers. Both these controllers give similar performance but the adaptive con-

troller settles faster. We can also see that none of the controllers achieve perfect

tracking.

The MBL controller was treated seperately because of its poor performance as

can be observed in Figure 4–12. If its results had been plotted alongside the other

controllers, the plots would have been harder to read. The MBL fails to accelerate

or even to maintain the speed constant. It does not reach any clear steady-state

speed, though on average, it remains around the desired speed. We can also observe

on Figure 4–12 that vehicle does not reach an equilibrium. It is difficult to explain

why the MBL performed poorly. The PID gains were set to the same values for

all controllers, and so, the poor performance came from the model-based part of

the controller. The two terms which differed between the MBL and the MBNL

controllers were the damping and Coriolis matrix as shown in (3.9) and (3.12). We
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can see that the MBL uses the actual velocity of the vehicle instead of the desired

one in the calculation of the damping and Coriolis forces. Therefore, any undesired

motion could be accentuated by the MBL. For example, an undesired yaw motion

will command a positive yaw moment from the damping force because of its form:

NMBL = NPID + Izz ṙ + CΨ(v)v + DΨ(v)v (4.13)

where NMBL and NPID the desired yaw moment as defined by the MBL and PID,

CΨ is the Coriolis force in the yaw direction and DΨ is the damping coefficient in

the yaw direction. In the case of an undesired positive yaw rate, the last term will

still command a positive yaw moment which will have the effect of accentuating the

undesired motion. Because of this poor performance, we have decided not to use the

MBL controller in the future simulation and experiments.

Based on the results presented in Figure 4–9, 4–10, 4–11 and Table 4–3 we

can conclude that the Floquet and adaptive controllers are superior to the PID and

MBNL for surge speed tracking. The Floquet controller appears to be better for

constant speed tracking while adaptive handles the acceleration better.

4.3.2 Roll simulation results

Once again, the six degrees of freedom simulation was run where the vehicle had

to follow the three roll trajectories described in Section 4.2. The controllers used the

same gains as for the surge maneuvers presented in Table 4–2. Figures 4–13, 4–14

and 4–15 show how the vehicle was able to track the three roll maneuvers. The first

thing to notice is that all controllers provide good roll tracking performance. In the

first maneuver, shown in Figure 4–13, we can see that the Floquet controller gives
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Figure 4–13: Simulation of the first roll maneuver

the best performance while the adaptive controller gives the worst. The good result

from Floquet was expected since it deals directly with the time-periodic feature of

Aqua. The PID and MB controllers give similar performance with a small advantage

to the model-based one. Furthermore, if we zoom at the end of the maneuver, we

could see that the adaptive controller has the smallest steady-state error.

In the case of the second maneuver displayed in Figure 4–14, we see that all

controllers give similar performance. The tracking error is insignificant in all cases.

We can explain the improvement of the adaptive controller by the fact that the

desired roll rate was changing gradually and the adaptive controller had more time

to adjust. For the third maneuver shown in Figure 4–15, the adaptive controller was

the only controller that did not give an overshoot, while the three other controllers

had a small overshoot which is most visible at t ≈ 10s. However, all controllers give

good results and the error remains small.
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Figure 4–14: Simulation of the second roll maneuver

Figure 4–15: Simulation of the third roll maneuver
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Figure 4–16: Simulation of the first pitch maneuver

4.3.3 Pitch simulation results

Once again, the six degrees of freedom simulation was run where the vehicle had

to follow the two pitch trajectories described in Section 4.2. The controllers used

the same gains as for the surge maneuvers presented in Table 4–2. Figures 4–16 and

4–17 show how the vehicle tracked the 2 pitch maneuvers. We clearly notice in both

figures that the PID controller gives the worst performance. It has a large overshoot

and takes more time than the other controllers to settle. This is probably due to the

fact that the integral gain is higher in pitch than it was in roll. The PID pitch gains

were tuned using the maneuver shown in Figure 4–17 and the integral gain would

have been lower if tuned using the first pitch maneuver. The two other controllers

that used the PID gains (MBNL and adaptive) perform better because they had

other terms to counter balance the integral effect.

In the second pitch maneuver shown in Figure 4–17, the PID controller is still

the worst but gives better performance than for the first maneuver. The adaptive
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Figure 4–17: Simulation of the second pitch maneuver

controller is slightly more accurate than the others, but only by a very small margin.

The Floquet and MB controllers give good performance with similar error. Based on

the results shown in Figure 4–16 and 4–17, we can conclude that all controllers can

track pitch accurately with a small advantage for the adaptive controller. Moreover,

we note that the PID controller gives the worst performance.

4.3.4 Surge simulation with disturbances

In the previous simulations, it was assumed that there were no external flow/current

acting on the vehicle. In this section, we have simulated an horizontal current of

0.2m/s acting at angle of 45◦. The disturbance was simulated by a pulse starting

at t = 5s and ending at t = 10s. We compared the motion of the vehicle with and

without a controller to evaluate the performance of the controller with disturbances.

The objective of the controller was to keep the velocity constant at u = 0.455m/s.

Figure 4–18 shows the controlled and uncontrolled motion of the vehicle under distur-

bance. The controlled motion shown in Figure 4–18 was obtained using the Floquet
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Figure 4–18: Surge simulation with a disturbance applied between t = 5s and t = 10s.

controller. The adaptive controller also gave good performance but is not shown

to keep the figure understandable and clear. We clearly see that the speed of the

uncontrolled vehicle decreases drastically until the current stops at t = 10s. On

the other hand, the speed of the controlled vehicle decreases when the disturbance

starts at t = 5s but the controller compensates for it and the speed remains constant

afterward. From this, we can conclude that the Floquet controller is robust to flow

disturbance.

4.3.5 Evolution of Â in the simulation

As mentioned in Section 3.4.1, one of the advantage of the MIAC adative con-

troller was that it provides an approximation of state-space matrix A. In this section,

we present a comparison between A obtained in Section 2.6 and the estimated by
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Maneuver Â1,1 A1,1 Â4,4 A4,4 Â5,5 A5,5

Surge (Figure 4–9) -0.834 -0.8726 -5.38 -5.54 -9.62 -9.264
Roll (Figure 4–15) -0.824 -0.8726 -5.489 -5.54 -9.22 -9.264
Pitch (Figure 4–16) -0.830 -0.8726 -5.520 -5.54 -9.37 -9.264

Table 4–4: Comparison of Â and A during the simulation

the MIAC update algorithm. We compare the most relevant elements of the matrix

for each maneuver: A1,1 for the surge maneuver, A4,4 for the roll maneuver and A5,5

for the pitch maneuver. The results are tabulated in Table 4–4. We used the step

maneuvers in surge, roll and pitch as the reference maneuvers. They were chosen

because they match the linearization conditions and are therefore suitable for direct

comparison: steady-state surge speed of 0.5 m/s with zero roll rate and pitch rate.

The step maneuvers remain closest to these conditions than the other maneuvers.

The values presented in Table 4–4 were evaluated at the end of the maneuver.

We can see from Table 4–4 that Â generally matches A with good accuracy

for all maneuvers. However, Â5,5 takes significantly more time to converge than the

two other entries of Â shown in the Table. Increasing the adaptive gain pertaining

to pitch did not improve the convergence speed. One cause of this behavior is that

there are two entries of A that strongly affect the pitch motion: A5,5 and A5,3. This

means that in the pitch motion these two entries can offset each other and reduce

the speed of convergence:

˙̂
A5,3 = Γheaveε3x3 (4.14a)

˙̂
A5,5 = Γpitch (ε5x3 + ε5x5) (4.14b)
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ε̇3 = A3,3ε3 +
(
Â3,3 −A3,3

)
ŵ (4.14c)

ε̇5 = A5,3ε3 + A5,5ε5 +
(
Â5,3 −A5,3

)
ŵ +

(
Â5,5 −A5,5

)
q̂ (4.14d)

where ε̇5 is the derivative of the pitch rate error and ε̇3 is the derivative of the heave

velocity error. We can see from (4.14b) that
˙̂
A5,5 will converge to zero when ε5

converges to zero. However, the convergence of ε5 depends on A5,3 and that entry

also takes a long time to converge to its final value. In our case, the desired value

for pitch rate and heave velocity is zero which means that q̂ and ŵ are small. If

A5,3ε3 ≈ −A5,5ε5 in (4.14d), then ε̇5 will be small and as a result the convergence

time will be large.

Figure 4–19 shows how Â1,1 adapts itself and eventually converges to its final

value. We can see in Figure 4–19a that it takes around 5 seconds to settle to a steady-

state value. Figure 4–19b shows how Â1,1 changes over a 2 second period once it has

converged to its final value. We notice that it oscillates at twice the paddle frequency

which means that the controller reacts to Aqua’s time-periodic thrust. Therefore,

even though the vehicle reaches its desired speed, the controller keeps updating A1,1

because of the oscillating thrust. The frequency of oscillation observed on Figure

4–19b is twice the paddle frequency because there are two thrust cycles per paddle

cycle.

4.4 Experimental Results

This section presents the results of the trajectory tracking experiments per-

formed on the Aqua underwater vehicle. The experiments were done in the Caribbean

Sea in January 2009 and January 2010. Aqua sensors can only measure the Euler
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Figure 4–19: (a) Value of A1,1 with time during the maneuver shown in Figure 4–9 (b) Zoom of
A1,1 between t=26s and t=28s

Roll Pitch Yaw

Kd 3 (Nms)rad−1 3 (Nms)rad−1 0.5 (Nms)rad−1

Kp 5 (Nm)rad−1 6 (Nm)rad−1 0.5 (Nm)rad−1

Table 4–5: PID control gains used in the experiment

angles accurately. The sensing in the translational degrees of freedom is inaccurate

and cannot be used for feedback purposes. Sensing in yaw is more accurate than

in the transaltional degrees of freedom but still unreliable for feedback purposes.

Moreover, we were not able to use the integral gains on the robot and it was set

to zero for all controllers. Therefore only the pitch and roll maneuvers were tested

during the experiments and those maneuvers are described in Section 4.2. The PD

gains had to be retuned for the experiments because it was clear from our first test

that the gains obtained in the simulation could be improved. The new gains are

presented in Table 4–5. Note here that the translational degrees of freedom were left

uncontrolled. Moreover, since we had trouble in the simulation with the MBL, this

controller was not tested in the most recent experimental session in January 2010.
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Figure 4–20: Boat used in the experiment in Barbados

The experiment was performed from a boat located around 100 meters from

the shore. The boat used during the experiment is shown in Figure 4–20 and the

experimental setup is similar to the shore on as shown on Figure 4–2 in Section

4.1.2. More information about the experimental setup was given in Section 1.1.5.

From that distance, the effect of the surf was considered negligible. The vehicle was

placed at a depth of one meter by a diver and released. Once released, the vehicle

started to move in straight line with the controller inactive for four seconds to allow

the vehicle to reach steady-state. Then, the controller was switched on and the

vehicle started to track the prescribed trajectories. The speed was uncontrolled but

the period and amplitude of oscillation of the paddles were set at the values that give

a speed of 0.5 m/s when going in straight line. The controllers change the amplitude

of oscillation to produce more thrust, but due to the high weight put on period in
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Controller Settling time(s)

PD 4.5
MBNL N/A

Adaptive 1.9
Floquet 1.6

Table 4–6: Experimental settling time for the maneuver shown in Figure 4–23

(2.30) of Section 2.5, the period of oscillation is almost constant. The roll and pitch

motion was controlled by the controllers.

4.4.1 Roll experiment results

This section presents the experimental results for the three roll maneuvers. Fig-

ures 4–21, 4–22, 4–23 and Table 4–6 shows how the vehicle was able to track the

maneuvers. From Figure 4–21, we can see that the Floquet controller gives the best

performance in tracking a steadily increasing roll angle. The adaptive controller

gives good performance, especially when the roll rate is positive, and gives more

error when the desired roll angle starts to decrease. When the vehicle reaches the

maximum roll angle, the desired speed suddenly changes from positive to negative

which has the effect of changing the state matrix A. Therefore, the adaptive model

Â becomes inaccurate and some time is required to make the update. As a result

the controller does not initially output enough force to make the sharp change in roll

motion. The PD controller gives reasonable performance while the MBNL follows

the general motion, but with an error of about 25%.

In the case of Figure 4–22, all controllers track the trajectory accurately. The

performance of the adaptive and Floquet controller is marginally better. There

are more significant differences in the case of the maneuver shown in Figure 4–23.

Table 4–6 shows the settling time pertaining to the maneuver shown in Figure 4–23.
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Figure 4–21: Experimental results of the first roll maneuver.

The settling time was obtained as in the simulation using the MATLAB function

lsiminfo. Again, the MBNL controller gives the worst performance and does not

reach the desired roll angle within a reasonable time. The PD controller tracks the

desired roll angle but the settling time is significantly larger than that of the Floquet

or adaptive controller. The adaptive and Floquet controllers give good performance

with small settling time. We can also notice the presence of oscillations in the case

of the Floquet controller. This oscillation is due to high control gains in roll which

has the effect of increasing the oscillations.

Based on the results presented in Figures 4–21, 4–22, 4–23 and Table 4–6, we

can conclude that the adaptive and Floquet controllers outperform the MBNL and

PD controllers in roll tracking. Moreover, we see that in the case of a constant roll
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Figure 4–22: Experimental results of the second roll maneuver.

rate, the Floquet controller gives the best performance. In the case of a step change

in roll angle, the adaptive controller has the advantage.

4.4.2 Pitch experiment results

This section presents the experimental results for the two pitch maneuvers.

Figures 4–24 and 4–25 show how the vehicle tracks two pitch maneuvers. We can

clearly see from both figures that the performance in pitch tracking is not as good

as that in roll tracking, which had already been suggested by the simulation results.

However, the simulation indicated a better performance than what was obtained in

the experiment.

We can see in Figure 4–24 that only the adaptive controller was able to reach the

desired pitch angle within the required time of 5 seconds. The adaptive controller

even overshoots the desired pitch angle when it goes to θd = −28.6◦. This poor
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Figure 4–23: Experimental results of the third roll maneuver.

performance of the PD and Floquet controllers is probably due to a high derivative

gain relative to the proportional gain. In a maneuver as shown in Figure 4–24, the

desired roll rate is zero and therefore, the derivative part of the PD controller tries

to prevent the vehicle from rotating and negates the effect of the proportional gain

that tries to move the vehicle to its desired pitch angle.

The performance of the different controllers in tracking a sinusoidal pitch ma-

neuver as shown in Figure 4–25 is also worse than expected. First, we see that for

all four controllers, the vehicle significantly lags the desired roll angle. We could not

reduce the frequency of the maneuver in order not to hit the sea bottom or reach

the surface. We see that the Floquet controller has the smallest lag but it does not

reach the maximum pitch angle. The adaptive controller shows more lag but after

three complete oscillations, it reaches the maximum pitch angle. This implies that
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Figure 4–24: Experimental results of the first pitch maneuver.

it takes around 3 cycles to adapt itself. However, we do not have enough data to see

if the adaptive controller would eventually reduce the time lag.

Based on these results, we can conclude that the adaptive controller gives a

significantly better performance than the three others in pitch tracking. The MBNL

gives the worst performance and the results suggest that there might be an imple-

mentation mistake since previous experiments suggested good performance from the

MBNL [80].

4.4.3 Evolution of Â in the experiment

In this section, we present a comparison between A obtained in Section 2.6 and

the one estimated by the MIAC update algorithm. We compare the most relevant

elements of the matrix for each maneuver: A4,4 for the roll maneuver and A5,5 for

the pitch maneuver. Once again, we used the step maneuvers in roll and pitch as the
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Figure 4–25: Experimental results of the second pitch maneuver.

reference maneuvers, because they are the maneuvers that remain the closest to the

linearization conditions: steady-state surge speed of 0.5 m/s and zero roll rate and

pitch rate. The results are tabulated in Table 4–7. We see that the match between Â

and A is not as good as it was during the simulation. One cause for this is that the

forward speed of the vehicle was likely not 0.5 m/s because during the maneuver,

some of the thrust is used to perform the maneuver instead of keeping the speed

constant. By repeating the linearization process for different values of the forward

speed, we found that at u = 0.32m/s there is a better match: A4,4 = −5.96 and

A5,5 = −5.64. In the simulation, we found that the velocity of the vehicle dropped to

u = 0.338m/s during this maneuver before going back to 0.5m/s. In the experiment,

the surge velocity is uncontrolled so it did not reaccelerate to u = 0.5m/s. Without
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Â4,4 A4,4 Â5,5 A5,5

-6.46 -5.54 -5.90 -9.26

Table 4–7: Comparison of Â and A during the experiment

any accurate measurement of the forward speed u, comparing the model obtained

through linearization and the one obtained with the MIAC is of questionable.

Figure 4–26 shows how the value of Â4,4 and Â5,5 were updated. The maneuver

shown in Figure 4–23 was used to generate Figure 4–26a and the maneuver in Figure

4–24 was used to generate Figure 4–26b. Both maneuvers were tested twice. The

first thing to notice is that both trials converge to approximately the same the same

value. We also notice from Figure 4–26a that Â4,4 becomes positive around t=10s.

This is probably due to a too high adaptive roll gain. By reducing the value of Γroll,

the curves presented in Figure 4–26 would probably be smoother. The same is true

for Â5,5.

Although it is not visible on Figure 4–26, we have observed the presence of an

oscillation with frequency equal to twice the paddles’ frequency of oscillation. This

phenomenon was also be observed in the simulation. This oscillation, albeit small, is

the reaction of the adaptive law to the time-periodic thrust provided by the paddles.

4.5 Summary of the Results

This chapter presented the simulation and experimental results for the four

trajectory tracking controllers developed in Chapter 3. These controllers were im-

plemented in a dynamics simulation and on the Aqua underwater vehicle. They were

then tested to assess and compare their performance. Trajectories were defined in

surge, roll and pitch degrees of freedom. We did not evaluate sway, heave or yaw
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Figure 4–26: Variation of Â4,4 and Â5,5 with time.

tracking because the vehicle was not equipped with reliable feedback sensing in these

degrees of freedom. The tracking of a yaw trajectory was tested in the simulation

during the optimization discussed in Chapter 5.

The simulation results suggested that in surge speed tracking, the Floquet con-

troller was the best for constant speed tracking and the adaptive controller was the

best for acceleration. In roll motion, every controller gave a good performance but

the Floquet controller was better by a small margin. In pitch, the adaptive con-

troller was the most accurate of all controllers. In the experiment, the Floquet and

adaptive controllers were the most accurate. The Floquet controller gave the best

performance in all three roll maneuvers. In the third roll maneuver, the adaptive

controller gave similar performance as the Floquet controller. For pitch tracking, the
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adaptive controller was the most accurate, but no controller was capable of track-

ing the sinusoidal pitch motion accurately. We also saw that there is a good match

between the simulation and the experiment results. The controllers perform better

in the simulation but in general, the results are similar. Moreover, the Floquet and

adaptive controllers were superior in both the simulation and the experiment.

Each of these controllers would perform differently depending on the type of

mission. We could expect that when the trajectory and mission conditions are known

in advance, the Floquet controller would be the most appropriate. It gave very good

performance for all maneuvers but it is not as robust to disturbances as the adaptive

controller is. The adaptive controller could be used for missions when there are

several unknown conditions and a lot of maneuvring. This type of mission would

take advantage of the adaptive capability of this controller.
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CHAPTER 5

Maneuver Optimization
With a validated dynamics model and effective controllers available for Aqua,

it is now possible to study particular applications for the vehicle. In this chapter

we use the vehicle model and associated controllers to optimize a high performance

maneuver. As was mentioned in Section 1.2, other researchers have studied high

performance maneuver and path planning for underwater vehicle [67,68,70,77]. Their

work provides good starting point for our optimization but cannot be applied directly

to Aqua because of the differences in vehicle.

A U-turn was chosen for this optimization because of its many practical applica-

tions. The optimization approach discussed in this chapter could be used to optimize

other high performance maneuvers for underwater vehicles. Moreover, the results of

this optimization can be used in real life application such as coral reef inspection.

The chapter is organized as follow. The details of the maneuver are presented in

Section 5.1. Three design variables were chosen to characterize the maneuver: desired

speed, turn radius and bank angle. This is discussed in Section 5.2. The controller

used in for this work is presented in Section 5.3. Then, the objective function and the

constraints are described in Sections 5.4 and 5.5. A genetic algorithm was chosen to
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perform the optimization, and the motivation for that decision is discussed in Section

5.6. Finally, the results of the optimization are presented in Section 5.7.

5.1 Objective and motivations

One of the many applications of Aqua is coral reef inspection. In order to

inspect a larger area many video segments are recorded and combined to get an

overall image of the reef. In order to get an accurate image of the area, the vehicle

must obtain images using a systematic procedure [81, 82]. This is accomplished by

following parallel track line as shown in Figure 5–1, where the area being inspected

would be located under the vehicle path. This is known as a Boustrophedon pattern.

At the end of each track line, the vehicle has to perform a 180 degrees turn in order to

reach the next track line, a distance D from it. During the turn, the vehicle does not

perform any useful work, since the data collected during transient motion is usually

of no value. For a large area with several track lines, a significant amount of time

might be lost. Therefore, it would be extremely useful to minimize that wasted time.

In this chapter, the objective is to minimize the time to transition from one

track line to the next by determining the best path to perform the maneuver. The

maneuver is assumed to be composed of 3 parts that can be seen in Figure 5–1. The

first part is a quarter circle of radius R. Then the vehicle follows a straight trajectory

perpendicular to the track line for a distance d = D−2R and finally another quarter

circle of radius R to complete the turn. The maximum turn radius is half the distance

between the track lines. The total distance (S ) that the vehicle has to travel is a

function of R and D :
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Figure 5–1: View from above of the ptimization trajectory

S = D + (π − 2)R (5.1)

From (5.1), we can see that the total distance increases linearly with turn radius

for a given track line separation. We can also notice that for R = D
2

, S = πR. With

perfect tracking and constant speed, we would expect that by minimizing S, we

would also minimize the time. However, since perfect tracking is not guaranteed,

and the speed does not stay constant, we cannot assume that the smallest S gives

the smallest time.

5.2 Design variables

This section discusses the design variables or parameters that are used in the

optimization. Three design variables were used in our optimization problem, the

turn radius (Rin), the desired speed (uin) and the desired bank angle (φin). These

values were used to generate the desired trajectory of the vehicle, defined by xd, yd,

136



www.manaraa.com

Figure 5–2: Path of the vehicle for different turn radius for D = 10m

ud and φd—respectively the longitudinal position, the lateral position, the forward

speed and the bank angle of the vehicle. The desired values of the vertical position

and pitch angle were always zero, while the desired heading angle was such that the

vehicle was always oriented tangent to the desired path in the x-y plane.

The turn radius is the only design variable that directly affects the path taken

by the vehicle to go from one track line to the other. This can be observed in Figure

5–2 where we see how the turn radius affects the desired trajectory of the vehicle for

a trackline separation of 10m. We expect that for a larger R, the vehicle will be able

to maintain a higher speed than with a small R, and this may compensate for the

fact that the path S is larger.

The desired speed of the vehicle, ud, can be viewed as the speed setpoint during

the turn maneuver. It is a desired speed because, during the turns, the vehicle usually
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Figure 5–3: Desired speed of the vehicle,ud, as a function of its y-position for D = 10m and Rin =
1m

loses some of its forward speed. We expect that by reducing the speed of the vehicle

during the turn, it may be possible to perform sharper turns.

Figure 5–3 shows the desired speed of the vehicle,ud, as a function of the y-

position for four different values of uin. The vehicle is turning for 0 < y < R and

(D − R) < y < R. During those portions of the maneuver, the desired speed of

the vehicle is set to the input desired speed uin. However, for R < y < (D − R),

the vehicle is not turning and the desired speed can be increased without sacrificing

the turning capabilities of the vehicle. If the desired speed remained at uin for the

straight part of the turn, this would significantly reduce the performance of the

vehicle. Therefore, as shown in Figure 5–3, the desired speed is increased during the

straight part before decreasing for the second quarter-circle turn. Note that for uin

≥ 0.5m/s, the desired speed remains constant for the entire maneuver. Moreover,
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Figure 5–4: Desired bank angle of the vehicle,φd as a function of its y-position for D = 10m and
Rin = 1m

the desired speed is set to uin before the start of the maneuver so that it normally

enters the maneuver at the proper desired speed.

Figure 5–4 shows the desired bank angle of the vehicle,φd, as a function of the

y-position for three different value of φin. The desired bank angle increases at a

maximum rate of 45.8◦/s until it reaches its final value. The desired bank angle

then remains at φin until the end of the second quarter-circle turn, at which point

it returns to zero. The desired bank angle does not return to zero between the two

quarter-circle turns in order to maintain a constant speed. The paddles produce

both the propulsive and the control forces. When rolling, some of the thrust is used

to roll the vehicle instead of propelling it forward, resulting in a loss of speed. As a

result, it is more efficient for the vehicle to remain banked during the straight part

of the turn, as there is no performance penalty for doing so.
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Figure 5–5: Desired and actual position of the vehicle for D = 10m and Rin = 1m.

5.3 Control of the vehicle

As was mentioned in Section 3.1, the dynamics simulation takes the desired

trajectory, such as those shown in Figs. 5–2, 5–3 and 5–4, as input. The objective

of the vehicle controller is to make the vehicle track the desired trajectory as closely

as possible. We chose to use a PID controller because it was simple and gave good

results in the evaluations of Chapter 4. This controller was described in detail in

Section 3.2 and tested in Chapter 4. It was tuned specifically for this maneuver

and gave the same performance as the more advanced controllers in this specific

maneuver.

Figures 5–5 and 5–6 show how the PID controller tracks the desired trajectories

for a turn with D = 10m, Rin = 1m, uin = 0.4m/s and φin = 0◦. The vehicle tracks

the desired path reasonably well. Although there is some overshoot at the end of

each quarter-circle turn, the steady-state error is negligible. It is important to note

that the vehicle tracks the desired yaw angle accurately and that the overshoot is due

to the sideslip velocity. This velocity is induced by the Coriolis force and since we
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Figure 5–6: Desired and actual forward speed of the vehicle for D = 10, Rin = 1m and uin =
0.4m/s.

have no control in the lateral direction, it cannot be corrected directly. The vehicle

tracks the desired speed reasonably well. Since the propulsive force is generated by

oscillating paddles, the velocity also oscillates throughout the maneuver. We can also

see that the vehicle loses speed at the beginning of each quarter-turn but regains it

relatively quickly.

5.4 Objective function

The objective or fitness function is a metric of the quality of the maneuver being

optimized. In our specific situation, this function was defined as the time needed to

complete the maneuver. It is evaluated by running the MATLAB Simulink simulation

and recording the time history of the vehicle position. To do this, we had to define a

criterion to determine when the maneuver is considered completed. The criterion for
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turn completion was defined based on the RMS error of the position of the vehicle,

which is written as:

ERMS =
1

n

√√√√n−1∑
i=0

(y (N5 − i)−D)2 (5.2)

where y(j) is the lateral position of the vehicle at instant j and N5 is the time at

which the vehicle reached the position x = −5m (see Figure 5–2). This position

was chosen because at that point, the tracking error was essentially zero in all cases,

meaning that the maneuver was complete. We begin evaluating ERMS at x(N5)=-5m

and back up along the trajectory (increasing values of n). The time to complete the

maneuver,ts , called the settling time, is defined as the instant n at which ERMS first

exceeds 1.5% of the desired track line.

5.5 Constraints

During the optimization search, to find the optimal values of Rin, uin and φin,

constraints are imposed on the allowable range of values that these design variables

can have. The purpose of these constraints is to guarantee that the solution to the

optimization problem remains within the range of the vehicle capabilities. Moreover,

it reduces the search space of the algorithm which reduces the computing time. The

three design variables were bounded as follows:
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0.05 ≤ Rin ≤
D

2

0 ≤ φin ≤
π

2

0.3 ≤ uin ≤ 0.6 (5.3)

The lower bound on Rin represents the smallest turn that the vehicle was able

to make during our experimental tests, while the upper bound represents a perfect

semicircular trajectory. The bounds on the desired bank angle represent a pure yaw

turn and pure bank turn. For φin = 0◦, the vehicle will turn while staying perfectly

level. For φin = 90◦, the vehicle will turn by performing a pitching motion. Finally,

the bounds on the desired speed were based on the desirable operating range of the

vehicle.

5.6 Genetic algorithm

There exists many algorithms to solve optimization problems, and this section

describes the rationales for our choice of algorithm. The following criteria were

considered to choose among the many existing algorithms:

• capable of solving multivariable problems

• capable of handling constrained problems

• robust to local minima

• readily available in MATLAB

• no analytical gradient required
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Figure 5–7: settling time as a function of turn radius(Rin) for D = 10m, uin = 0.4m/s and φin = 0◦

The two most readily available algorithms in MATLAB are a steepest descent

method and a genetic algorithm. Both algorithms are able to handle constrained

multivariable problems and do not require an analytical gradient. However, the

genetic algorithm can better handle local minima. Figure 5–7 is a plot of the settling

time as a function of the turn radius for a track line separation of D = 10m. It

was obtained by running the simulation for different turn radii with uin = 0.4m/s,

φin = 0◦ and recording the settling time. There are many local minima along the

objective function and a gradient-based method could easily become trapped in one

of them. Based on this, we chose to use the genetic algorithm method to optimize

the maneuver.
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Figure 5–8: Genetic algorithm structure

A genetic algorithm is a search technique to find an approximate solution to an

optimization problem [83]. The structure of the genetic algorithm is shown in Figure

5–8. It begins with an initial population that initializes the search process. The

fitness of the n-th generation is evaluated in the block ”evaluation/fitness comput-

ing”. This operation is performed by running the simulation with the appropriate

Rin, uin and φin and determining the corresponding ts. If the generation satisfies

the convergence criterion, the algorithm stops and outputs the solution. Otherwise,

a new generation is created. The n+1 generation is divided into elite, crossover and

mutated members. The elites are the best members of the previous generation, and

they survive from one generation to the next. The crossovers are obtained by mixing

the genes (design variables) of elite members and the mutated are obtained randomly

based on the existing members of the previous generation. In our case, the genes

correspond to the design variables, i.e., turn radius, desired speed and desired bank

angle. This process continues until a solution is found.

The genetic algorithm is implemented using the MATLAB function ga.m. This

function takes as input the fitness function, the number of variables, the constraints,

the initial population, the stopping criteria, the number of elite, crossover and mu-

tated members, the maximum number of generations and the tolerance. These inputs
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were set at the beginning of the optimization and could not be modified while the

optimization was running. It outputs the optimal set of design variables as well as

the value of the fitness function for that optimal set. The function ga.m finds the

local minimum of the fitness function subject to the constraints described in (5.3).

The algorithm evaluates the fitness function for each member (set of genes) of the

population. Then, a new population is created based on the performance of the

previous population. The process is repeated until the stopping criterion is met.

To allow the optimizer to evaluate the objective function, the MATLAB Simulink

simulation of the vehicle was set up as a callable function. The design variables were

the inputs to the function while the settling time to complete the maneuver was the

output. The user specifies the initial population of design variables for the optimizer.

In our case, the initial population was set to random numbers within the constraints

defined in Section 5.5.

We considered single-variable optimizations and multi-variable optimizations.

In the single-variable case, only one design variable was allowed to vary while the

others were held fixed. In the multi-variable optimizations, multiple design variables

were varied simultaneously. In the single variable problem, we consider a population

size of eight individuals. The optimizer evaluates the objective function for each indi-

vidual and then keeps the best one (the elite member) for the next generation. Since

the genes have only a single design variable, crossover members cannot be created.

Thus, the seven other members of the new generation are mutated members. The

mutants are generated by the MATLAB function mutationadaptfeasible.m. This

function randomly generates directions that are adaptive with respect to the last
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successful or unsuccessful generation. The feasible region is bounded by the con-

straints and inequality constraints. A step length is chosen along each direction so

that linear constraints and bounds are satisfied. The process of propagating popu-

lations is repeated until no improvements are observed after 10 generations. At that

point, the optimizer switches to a gradient-based method to refine the solution. The

gradient-based method uses the MATLAB function fmincon.m, based on a Sequential

Quadratic Programming algorithm.

For the multivariable optimization, we use a population of 12 individuals instead

of eight. The reasoning behind that change is that since there are two additional de-

sign variables, the search space is larger. Three elite members that are retained from

one generation to the next. Of the remaining nine members of the population, six are

mutants, while the three others are crossover members. The crossovers are obtained

by mixing the design variables of the elite members. A different approach was used to

create the mutants for the multivariable case. The genes of the offspring are obtained

as the average of the genes of randomly-chosen parents, and a Gaussian-distributed

variation is then added. The standard deviation of the distribution decreases with

each generation:

σn = σn−1

(
1− sn− 1

N

)
(5.4)

where σn is the standard deviation at generation n, s is a shrinking input parameter

that determines how quickly the standard deviation decreases and N is the maximum

number of generation. As before, each mutant must meet the bounds shown in (5.3).
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Figure 5–9: Optimum settling time ts and optimal desired speed uin for different track line sepa-
rations D. The turn radius was set to Rin = 0.25m and the desired bank angle at φin = 0◦.

5.7 Optimization Results

We now consider the results of the optimization described in the preceding

section. This section is separated into two parts: single variable optimization and

multivariable optimization.

5.7.1 Single variable optimization

The algorithm was run for a range of trackline separations, from D = 1m to

D = 11m. A single design variable was allowed to vary in each case and the two other

variables were held constant. When they were held constant, the desired velocity of

the vehicle was fixed at 0.5 m/s, the desired turn radius at 0.25m and the desired

bank angle at 0◦.

Figures 5–9(speed), 5–10(turn radius) and 5–11(bank angle) show the results of

the three single variable optimizations. In addition to the value of the design variable
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and settling time, the minimum settling time is also plotted. The minimum settling

time is a function of the trackline separation only and is defined as the minimum

time it would take to go from one trackline to the other if there were no physical

limitations. It is obtained by assuming a turn radius of 0m in (5.1) and that the

vehicle can go as fast as the upper bound stated in (5.3):

Tsminimum
=

D

0.6
(5.5)

In Figure 5–9, we find that the optimal speed is somewhat lower for the smallest

track line separation but then remains relatively constant at around 0.5 m/s for

all the others. This implies that for small track line separation, it is better to go

slower to perform the turn. Beyond that, increasing the speed does not improve the

performance. We also see that the settling time increases almost linearly with track

line separation. This is expected since the speed is almost constant and from Eq.

(5.1) the total distance increases linearly with track line separation, implying that

the trajectories are similar but with different track line separation. From Figure 5–9,

we see that the optimal speed never reaches the upper bound of uin = 0.6m/s. At

this upper bound, the overshoot in lateral position is large and this negatively affects

the settling time.

In Figure 5–10, we see that the settling time again increases with track line

separation. The only exception is from 6.0 to 7.0m where the settling time decreased.

There is also a large change in the optimal turn radius between those two track line

separations. This is explained by the loss of velocity when the vehicle makes a sharp

turn. Because of its design, the propulsive and control forces are coupled on Aqua
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Figure 5–10: Optimum settling time ts and optimal turn radius Rin for different track line separa-
tions D. The desired speed was set to uin = 0.5m/s and the desired bank angle at φin = 0◦.

and, as a result, changing the heading affects the speed. Even if the desired velocity

remains at 0.5m/s, the vehicle does not have the capability to turn quickly while

maintaining a constant forward speed. For large D, the loss of speed during the turn

is not as significant because there is more distance to re-accelerate. However, for a

smaller D, the vehicle does not have time to accelerate to its desired speed before it

needs to turn again. In that case, the results suggest that it is better to take a wider

turn that requires less control effort. It is important to note that these results were

obtained for a constant desired speed of 0.5m/s. The results would be different for

a different speed. For track line larger than 7.0m, the optimal turn radius remains

constant at around 0.11m. We expect that it would remain at that value of R for all

D > 7.0m.

150



www.manaraa.com

Figure 5–11: Optimum settling time ts and optimal bank angle φin for different track line separa-
tions. The desired speed was set to uin = 0.5m/s and the turn radius to Rin = 0.25m.

In Figure 5–11, we see that the optimal bank angle is never zero, implying that

banking improves the vehicle performance for this maneuver. The optimal bank

angle initially starts low and then levels out at 12◦. Moreover, we find from looking

at the detailed optimization data that the optimal bank angle reduces the settling

time by about 15% relative to the pure yawing turn for 2m ≤ D ≤ 7m, which is

significant.

It is difficult to explain why the optimal bank angle is not higher for small track

line separation as one might expect. We find that the bank angle has less impact

on the settling time for these cases. The difference in settling time between a bank

angle of 6◦ and 12◦ for D=1m is only 0.2s. Moreover, increasing the bank angle to

45◦ only increases the settling time by 0.8s relative to the optimal bank angle.
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For track line separations between 8m and 10m, the bank angle does not change

the performance significantly. This was expected since the turn radius remains con-

stant for all track line separations. Thus, as D increases, the straight part of the

maneuver becomes dominant and that part of the maneuver is unaffected by the

bank angle. Therefore, from these results, we conclude that a bank angle can reduce

the settling time for 2m ≤ D ≤ 7m, while outside that range, the improvement is

less significant.

5.7.2 Multivariable optimization

The algorithm was again run for a range of trackline separations using the desired

speed uin and turn radius Rin as the design variables. We chose this pair of variables

because they are the easiest to control and because we expect them to have the most

effect on the performance. In Eq. (5.4), the initial standard deviation (σ0) was set

to half the range of the design parameters, the shrinking parameter (s) was set to 1

and the maximum number of generations (N ) to 75. With s set to 1, the standard

deviation decreased linearly to 0 as it reached the maximum number of generation

N.

Figure 5–12 and 5–13 shows the results for a two-variable optimization with

desired speed and turn radius as the design variables. The first thing we notice

in Figure 5–12 is that for large values of D ≥ 7m, the optimal speed and turn

radius are the same as those found in the single variable optimization. Moreover, for

4m ≤ D ≤ 7m the optimal turn radius is almost the same, while the optimal desired

speed changes. This implies that it is better to take a shorter path (i.e., a small

turn radius) at slower speed than to maintain a higher speed and take a longer path.

152



www.manaraa.com

Figure 5–12: Optimal turn radius and desired speed for different track line.

Trackline separation(m) 1 2 3 4 5 6 7 8 9 10 11
2 variables(s) 4.97 6.25 8.50 10.37 11.45 12.52 14.12 16.87 18.90 21.17 25.40

Single variable(s) 5.15 6.25 9.75 12.75 15.27 16.42 14.92 17.18 18.90 21.17 25.40
Difference (%) 3.52 0.00 14.71 22.89 33.36 31.14 5.66 1.78 0.00 0.00 0.00

Table 5–1: Settling time for the two-variable optimization and for the best result obtained in the
single variable optimization

Track line separations between 2 and 3 meters are the exception to this rule. In those

two cases, the optimal turn radius is higher and the desired speed remains high. It

means that it is better to take a longer path at higher speed. We also notice that

both the turn radius and desired speed decrease for 2m ≤ D ≤ 4m. After D = 4m,

it becomes better to take a shorter path at a lower speed.

Figure 5–13 and Table 5–1 show the settling time obtained in the two-variable

optimization shown in Figure 5–12 and compares it to the best time obtained in

Figures 5–9 or 5–10. The optimal settling time is computed using (5.5). It shows

that the settling time obtained with the two-variable optimization is always less or

equal to the best settling time obtained in the single variable optimizations. For

large track line separations, the results are similar because we were already using the
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Figure 5–13: Settling time for the two-variable optimization and for the best result obtained in the
single variable optimization.

Trackline separation(m) 1 2 3 4 5 6 7 8 9 10
Optimal Settling time(s) 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67

Settling time(s) 4.97 5.75 8.50 10.37 11.45 12.52 14.12 16.87 18.90 21.17
Turn radius(m) 0.109 0.103 0.163 0.103 0.109 0.110 0.110 0.110 0.106 0.106

Desired speed(m/s) 0.455 0.464 0.468 0.380 0.402 0.455 0.5156 0.5156 0.5156 0.5156
Bank angle(◦) 0.00 36.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5–2: Results of the three variables optimization

optimal desired velocity in the single variable optimization. The difference is more

pronounced for 4m ≤ D ≤ 6m. This is due to the fact that, for those track line

separations, the optimal turn radius and desired speed obtained in the two-variable

optimization are significantly different from those obtained in the single variable

optimizations. In all cases, the optimal desired speed decreased while the optimal

turn radius became constant at around 0.11m. That turn radius is the same as that

obtained for D ≥ 7 in the single variable optimization with turn radius as the design

variable.
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The logical next step is to perform an optimization with all three design vari-

ables. As was the case for the 2 variables optimization, the initial standard deviation

(σ0) was set to half the range of the design parameters, the shrinking parameter (s)

was set to 1 and the maximum number of generations (N ) to 75. Table 5–2 shows

the results of the three-variable optimization. We can see that the settling time is

the same as for the two-variable optimization except in the case where D = 2m. For

that trackline separation, there was a small improvement in settling time by using

a non-zero bank angle. Moreover, we see that the desired speed and turn radius

both decrease relative to the two-variable optimization (Figure 5–12. These results

imply that for all trackline separation, it is better to take the shortest possible path

and adjust the speed and bank angle accordingly. Figure 5–14 shows how the bank

angle affects the settling time for D=6m, u=0.45m/s and R=0.104m. The turn ra-

dius and desired speed are the optimal values found in both the two-variable and

three-variable optimization. We see that a non-zero bank angle does not improve

the performance of the maneuver when we use the optimal turn radius and desired

speed. This implies that the best turn is done by using a turn radius of about 0.109m

and adjusting the speed of the vehicle without any bank angle. You can also see on

Figure 5–14 that once you reach a bank angle of 11◦, increasing the bank angle does

not affect the settling time anymore.

5.8 Summary of the Optimization

In this chapter, we found that the optimal turn radius is around Rin = 0.11m

for all D except for D = 3m. The optimal speed uin is not constant and is varying

for D ≤ 6m. For D ≥ 7m, the optimal speed remains constant at uin = 0.52m/s.
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Figure 5–14: Settling time as a function of the bank angle for D=6m, Rin = 0.110m and uin =
0.455m/s

The optimal bank angle was zero for all D except for D = 2m where φin = 36◦.

In general, this implies that the best turn is accomplished by taking a small Rin

and adjusting the speed uin and bank angle φin according to Table 5–2. By using

these optimal parameters, we were able to significantly reduce the settling time ts in

comparison to a semi-circular turn with the same speed. For example, for D = 1m

the settling time can be reduced by 30.4% and for D = 10m by 31.6%.

These results could be used for a coral reef inspection. The parameters presented

in Table 5–2 would be stored in the vehicle memory and used when changing trackline.

Before changing trackline, the vehicle would compute the new trajectory based on

the optimal parameters found in the optmization. A different trajectory would be

computed for each trackline change. The approach used in this chapter could be

applied to other maneuvers and vehicles. The method presented could be adjusted

by changing the design parameters that would be particular to the new maneuver or

to special features of the vehicle.
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CHAPTER 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions

The main goal of this research was to develop trajectory tracking controllers

for a biomimetic autonomous underwater vehicle, using the Aqua vehicle as a test

case. A dynamics model of Aqua was developed to allow the design and evalua-

tion of advanced controllers. The controllers were tested in a computer simulation

and experimentally. Finally, an optimization of a high performance maneuver was

performed to accelerate the coral reef inspection procedure.

The study began with the development of a dynamics model for the Aqua un-

derwater vehicle. The dynamics model of the vehicle was validated experimentally

and we concluded that it was accurate in average surge velocity, roll, pitch and yaw.

A method based on an optimization to evaluate the thrust produced by an oscillating

paddle was proposed and validated. We found that the thrust produced by an oscil-

lating paddle was proportional to the ratio of amplitude over period of oscillation A
P

.

We also found that the flexible paddle was more efficient and could produce more
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thrust than the rigid one. A reverse mapping that transforms the desired paddle

thrust into paddle motion was proposed. It was based on an optimization to mini-

mize the total thrust needed by all six paddles. A technique to linearize time-periodic

systems based on differentiation by finite difference was proposed. We found that the

main diagonal of the state matrix A were the most important entries. We also found

that the constant part of the dynamics was more important than the time-periodic

part. The linear model was validated against the nonlinear one and was found to be

accurate.

With an accurate dynamics model available, we proceed to the design of tra-

jectory tracking controllers for Aqua. Four classes of controllers were developed:

PID, model-based controller, adaptive controller and Floquet controller. The PID

controller is the simplest and depends only on the error signals. Two model-based

controllers were developed: linearizing and nonlinear. An adaptive controller that

updates its internal model for modeling uncertainties, changing vehicle dynamics or

disturbances, was developed. A Floquet controller was designed using the theory

of time-periodic systems. The controllers were tested in a computer simulation and

experimentally to assess their performance. We found that the Floquet and adaptive

controllers gave the best overall performance of all controllers in both the simulation

and the experiment. We obtained the best settling time in roll with the Floquet

controller, while the adaptive controller was a close second. Overall, we concluded

that the Floquet controller was more accurate in roll while the adaptive controller

performed better in pitch. Furthermore, we found that the adaptive law converged

with acceptable accuracy.
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An optimization of a U-turn maneuver was performed to improve the vehicle

performance in coral reef inspection. The objective was to minimize the time taken

to complete the U-turn. Three design variables were chosen for the optimization: the

turn radius, the speed and the bank angle. We found that the turn radius Rin and

speed uin have the most impact on the performance, while the bank angle has a lesser

impact. We also found that it is always better to take a short path and adjust the

speed of the vehicle to minimize the time to complete the maneuver. Furthermore,

we found that the optimization results are significantly better than for a semi-circular

trajectory. The settling time was reduced by more than 30% in general.

6.2 Recommendations for Future Work

Based on the research presented in this thesis, several avenues for future research

can be suggested:

• One of the key similarities of all biomimetic underwater vehicles (BAUV) is the

presence of oscillating thrust. This thrust is often characterized by the period

and amplitude of oscillation of the fin which creates a situation where there

is no unique mapping between thrust and paddle motion. The optimization-

based mapping that was developed for Aqua could be applied to other BAUVs

with similar thrust characteristics.

• One part of the mapping from control forces to paddle motion was the allocation

of the thrust to the individual paddles which constitutes an underdetermined

problem. We used an optimization that minimized the sum of the thrust used

by the paddles. It would be interesting to investigate other methods for paddle
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thrust allocation. Moreover, the technique we used could be applied to other

redundant systems.

• The validated dynamics simulation of the vehicle could be used for application

other than controller testing, such as swimming gait optimization. Other gaits

such as walking or hovering gait could also be implemented in the simulation

and optimized.

• The control techniques tested on Aqua could be implemented on other BAUVs.

Furthermore, the dynamics model of Aqua could be adapted to other vehicle

since it is based on physics equations rather than on curve fitting.

• The inflow velocity should be measured in future thrust measuring experiments

for the flexible paddle, thus obviating the need to estimate it, as we are cur-

rently doing in Section 2.2.1. This would likely increase the accuracy of the

forward flexible paddle model.

• The reverse paddle model should take into account the fact that changing the

orientation of the paddle will produce a force perpendicular to the offset line.

At the moment, the reverse model assumed that the paddle will produce a

thrust only along the offset line. This perpendicular force can have a negative

effect, but it can also be used to produce quick rolling and pitching motion.

• The dynamics model was not validated in all possible degrees of freedom. Ac-

celeration in surge should be validated. However, this requires reliable sensors

to measure the speed of the vehicle and/or its position. If those sensors were

on-board and could be used during vehicle operation, they would also enable
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the use of controllers in all degrees of freedom, which is not possible at the

moment.

• The linearization discussed in Section 2.6 was performed for only three steady-

state conditions. For conditions between those, gain scheduling was used for

the Floquet controller. It would be useful to linearize the vehicle for more

steady-state conditions as this might improve the performance of the Floquet

controller.

• We have found that adaptive control was a good class of controllers to control

BAUVs. However, among all techniques within adaptive control, only MIAC

was evaluated on Aqua. Other techniques such as model reference adaptive

control or command generator tracker could prove to give better performance

than the MIAC presented in this thesis. These other controllers should be

evaluated.

• Experiments in a controlled environment should be done before testing in an

uncontrolled environment. This would give us more information to tune the

gains and make appropriate modification to the robot code. Moreover, we

would be able to compare the performance of the controllers with and without

disturbances.

• To further improve the turn maneuver optimization results, the variation of

desired speed and desired bank angle during the maneuver could be improved,

perhaps by accelerating more quickly in the straight part of the maneuver.

Moreover, it would be interesting to see if the results would differ if the popu-

lation size and maximum number of iterations were increased.
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• The results of the optimization should be validated experimentally. This would

require accurate measurement of the position of the vehicle, which is not pos-

sible at the moment.

• A more accurate hydrodynamic model describing the interference between the

front and back paddles should be investigated. This interference is likely sig-

nificant but was neglected in the current work.
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